Ю.А.Розанов

СЛУЧАЙНЫЕ ПОЛЯ И СТОХАСТИЧЕСКИЕ УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

Систематически излагается общий функциональный подход к изучению обобщенных стохастических дифференциальных уравнений производных, описывающих многие важные теоретико-вероятностные модели с помощью обобщенных случайных функций. Изучаются граничные свойства обобщенных функций, дается характеризация всех возможных граничных условий для общего (линейного) дифференциального оператора, устанавливается разрешимость общих граничных задач, дается их точное и приближенное решение. На этой основе находятся различные характеристики случайных полей, возникающих в предлагаемой общей теоретико-вероятностной модели, изучается их вероятностное поведение (например, устанавливается марковское свойство), рассматриваются различные задачи прогнозирования, задачи идентификации и оценки параметров самой модели по статиетпчески.м данным и др. От читателя предполагается знание основ функционального анализа и теории вероятностей.

ОГЛАВЛЕНИЕ

Предисловие	5
Введение	7
Глава І. Обобщенные случайные функции и их реализации	18
§ 1. Некоторые вводные понятия	16
1° Обобщенные случайные функции (16). 2° Пространства типа $W(20)$. 3°	
Пространства с воспроизводящим ядром (24). 4° Обобщенные	
случайные функции и стохастические интегралы (27).	
§ 2. Пространства пробных обобщенных функций	32
1° Пробные пространства типа $W(32)$. 2° Пробные пространства,	
связанные с операторами в L_2 (34). 3° Пробные пространства для	
дифференциальных операторов (37). 4° Преобразование Фурье	
пробных обобщенных функций (41). 5° Положительные	
дифференциальные операторы (55). 6 Мультипликаторы и	
локализация пробных обобщенных функций (59).	
§ 3. Реализация случайных обобщенных функций и некоторые теоремы	63
вложения	
1° Обобщенные функции и Соболевские пространства (65). 2° Реализация	
случайных функции и некоторые теоремы вложения (66). 3°	
Гауссовские случайные функции (71). 4° Вложения Гильберта —	
Шмидта (72). 5° Случайные обобщенные функции и Соболевские	
пространства (76).	
§ 4. Граничные значения обобщенных функций (случай соболсвских	79
пространств)	
1° Некоторые характерные свойства Соболевских пространств (79). 2°	
След обобщенных функций и граничные значения (82). 3° Полнота	
системы граничных значений (92). 4° Некоторые функциональные	

свойства граничных значений (95).	
Глава II. Дифференциальные уравнения для обобщенных случайных	99
функций	
§ 1. Обобщенные дифференциальные уравнения	99
1° Пробные функции для операторных уравнений (99). 2° Некоторые	
примеры (105).	
§ 2. Граничные задачи	119
1° Общие граничные условия для обобщенных дифференциальных	
уравнений И19). 2° Стохастическое волновое уравнение (132). 3°	
Стохастические эллиптические и параболические уравнения (147).	
§ 3. Однородные уравнения	159
1° Общий тип разрешимых граничных задач; точные и приближенные	
решения (159). 2° Гладкость и продолжаемость решении;	
устранимые особенности (164). 3° Продолжаемость и предельное	
поведение решений (169).	
Глава III. Случайные поля	177
§ 1. Вероятностные характеристики стохастических граничных задач	177
1° Среднее значение (177). 2° Корреляционная функция (178). 3°	
Характеристический функционал (184).	
§ 2. Прогнозирование и марковское свойство	183
1° Задача о наилучшем прогнозе (189). 2° Наилучший прогноз и	
марковское свойство (198).	
Глава IV. Гауссовские случайные поля	209
§ 1. Некоторые вспомогательные предложения	209
1° Гауссовские величины и σ-алгебры событий (209). 2° Полиномы от	
гауссовских величин (212). 3° Одна теорема сравнения для	
квадратичных форм от гауссовских величин (216). 4° Отношение	
правдоподобия (218).	
§ 2. Идентификация коэффициентов стохастических дифференциальных	225
уравнений по реализации их решения	
1° Условия эквивалентности и взаимной сингулярности гауссовских	
распределений (225). 2° Идентификация коэффициентов (230). 3° Об	
оценках корреляционного оператора (237).	
§ 3. Оценка осредненных решений стохастических дифференциальных	240
уравнений	
1° Постановка задачи. Наилучшие несмещенные оценки (240). 2°	
Псевдонаилучшие оценки и метод наименьших квадратов; условие	
состоятельности (246).	

ПРЕДИСЛОВИЕ

Обратившись к классическим моделям математической физики, которые описываются разного типа дифференциальными уравнениями в частных производных, и представив себе возможность воздействия на них стохастических (случайных) возмущений, мы сталкиваемся с тем обстоятельством, что возникающие при таком воздействии случайные поля не укладываются в рамки решений известных граничных задач теории дифференциальных уравнений, и здесь требуется новый подход к самой постановке стохастических граничных условий для обобщенных случайных функций, представляющих обобщенное решение соответствующих стохастических дифференциальных уравнений в частных производных. С другой стороны, многие классические модели случайных полей, лежащие у истоков различных направлений общей теории случайных функций, могут быть описаны с помощью стохастических обобщенных дифференциальных уравнений, причем здесь при рассмотрении таких традиционных тем, как, например, прогнозирование и контроль, возникают повые для теории дифференциальных уравнений граничные задачи. Случайным полям, которые описываются разного типа стохастическими обобщенными дифференциальными уравнениями при всевозможных стохастических граничных условиях, и посвящена настоящая монография -в ней главным образом нашли отражение результаты моих исследований в период 1982—1987 гг. в Математическом институте им. В. А. Стеклова АН СССР, а также в международном центре БиБоС (Билефельд — Бохум — Стохастика, ФРГ).

Начало этих исследований как в постановке основных вопросов, так и в части нолучившихся результатов было горячо поддержано А. Н. Колмогоровым, что имело для меня неоценимое значение. Я хотел бы поблагодарить С. Албеверно, В. С. Владимирова, А. К. Гущина, В. П. Михайлова. О. А. Олейшик, С. Л. Соболева, Л. Хермандера за возможность представить и обсудить на их семинарах целый ряд различных вопросов, а также Е. С. Кедрову за помощь при подготовке книги к печати.

введение

Основное содержание и направленность предлагаемого материала совсем кратко можно было бы охарактеризовать как граничные задачи для обобщенных стохастических уравнений в частных производных. Для более полной характеристики обратимся к некоторым примерам и наиболее простым по своей постановке вопросам.

Рассмотрим такую известную теоретико-вероятностную модель, как броуновское движение Леви, описываемое случайной функцией $\xi = \xi(t)$, $t \in R^3$, с начальным $\xi(0) = 0$, нулевым средним и приращениями со средне-квадратичным

$$E|\xi(t) - \xi(s)|^2 = |t - s|, \quad s, t \in \mathbb{R}^3.$$

Хотя эта функция нигде не дифференцируема, она является обобщенным решением $u=\xi$ дифференциального уравнения

$$Lu = f \tag{1}$$

в области $T=R^3\setminus\{0\}$ без начальной точки t=0 с оператором Ланласа $L=\Delta$ и гауссовским «белым шумом» $f=\eta$ в пространстве $\mathcal{F}=\mathcal{L}_2(T)$. Более того, $u=\xi$ будет единственным решением в классе $u\in W$ обобщенных функций u=(x,u), непрерывных относительно пробных $x\in C_0^\infty(T)$ в соответствующем пространстве $X\supseteq C_0^\infty(T)$ обобщенных пробных функций для уравнения (1).

Понятно, что единственное в области T решение $u = \xi \in W$ уже не будет единственным в той или иной интересующей нас области $S \subseteq T$; его можно идентифицировать, например, с помощью граничного условия Дирихле

$$u(t) = \xi(t), \quad t \in \Gamma,$$
 (2)

на границе $\Gamma = \partial S$ с данной непрерывной функцией $\xi(t)$, $t \in \Gamma$. Правая часть $f = \eta$ уравнения (1) в области S не зависит от случайного источника η в не этой области, и можно было бы думать, что при задании граничных

условий (2) решение $u = \xi$ будет (по терминологии Λ . Н. Колмогорова*)) стохастически определенным в S, т. е. его распределение вероятностей при данных $\xi(t)$, $t \in \Gamma$, не будет зависеть от каких бы то ин было условий на поведение ξ в не области S. Однако это не так — скажем, имеются не зависящие от $\xi(t)$, $t \in \Gamma$, обобщенные граничные значения

$$(x, \xi) = (\xi, x),$$
 (3)

определяемые по ξ в не области S с номощью пробных $x \in X$ с носителями ѕирр $x \subseteq \Gamma$ на границе $\Gamma = \sigma S$, которые существенно влияют на условное распределение $u = \xi$ в нутр и S. Уточним, что в качестве обобщенных пробных $x \in X$ для рассматриваемого уравнения (1) используются обобщенные функции $x = (q, x), q \in C_0^\infty(T)$, непрерывные относительно

$$\|\varphi\|_W^2 = (\varphi, \mathscr{P}\varphi), \quad \mathscr{P} = L^*L.$$

и среди всех граничных значений (ξ, x) , ѕирр $x \subseteq \Gamma$, помимо $\xi(t) = (\xi, x)$ с дельта-функциями $x = \delta_t$ в граничных точках $t \in \Gamma$, например, имеются еще обобщенным нормальные производные (ξ, x) с обобщенными пробными вида

$$x = (q, x) - \int_{\Gamma} \partial q x(t) dt$$

где θq — нормальные производные функций $q \in C_0^\infty(T)$. Вопросмо стохастической определенности ξ в области S

при соответствующих граничных условиях является частью общей задачи о марковском свойстве, поставленной П. Леви **). В отношении его броуновского движения этот вопрос рассматривался Маккипом ***), предло-

***) Mc Ke an H. P. Brownian Motion with a several — dimentional time // Теор. верояти, и ее примен.— 1963.— Т. 8, № 4.— С. 357—378.

^{*)} Kolmogoroff A. N. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung // Math. Ann.— 1931.— Bd. 104.— S. 415—426.

**) Levy P. A special problem of Brownian motion, and a ge-

neral Theory of Gaussian random functions/Proceedings of Third Berkeley Symposium of Mathematical Statistics and Probability, V. II.— Berkeley — Los Angelos: Univ. California Press, 1956. P. 133—175.

жившим описывать требуемые граничные условия на поведение \$ с помощью фиксации всех событий из о-алгебры

 $\mathfrak{A}(\Gamma) = \Omega (\Gamma^{\epsilon}).$

(4)

где $\mathfrak{A}(\Gamma^{\epsilon})$ означает σ -алгебру событий, порождаемых поведением ξ в открытой окрестности Γ^{ϵ} границы, и пересечение берется по всем окрестностям; само марковское свойство было введено как условная независимость поведения случайной функции ξ в S от ее поведения в дополнительной области $S^+ = T \setminus (S \cup \Gamma)$ ири условии $\mathfrak{A}(\Gamma)$. Обратимся к функции

$$\widehat{\xi}(t) = E(\xi(t)/\mathfrak{A}(\Gamma)), \quad t \in S.$$

— она дает наплучиний средпеквадратичный прогноз для $\xi(t)$ при $t \in S$ по всем данным о ξ в не S. Оказывается, это функция $u(t) = \widehat{\xi}(t), \ t \in S$, удовлетворяет уравнению

$$\mathcal{P}u = 0 \tag{5}$$

(с $\mathscr{P}=\Delta^2$) в области S. Спранивается, можно ли по граничным данным $\mathfrak{A}(\Gamma)$ сформировать надлежащие граничные условия для решения $u \in \mathbf{W}$ этого дифференциального уравнения (скажем, типа условий Дирихле)? Ответ положителен. Именно, сама σ -алгебра $\mathfrak{A}(\Gamma)$ порождается введенными в (3) обобщенными траничными значениями, и требуемые граничные условия можно выразить в форме

$$(x, u) = (x, \xi), \quad \text{supp } x \subseteq \Gamma.$$
 (6)

— поясним, что обобщенные функции u=(x,u) из связанного с уравнениями (1), (5) функционального класса \mathbf{W} определены на всех пробных $x \in X$; при этом в (6) достаточно взять лишь полную систему граничных значений, например, можно задать (6) в форме обобщенного условия Дирихле для оператора $\mathcal{P} = \Delta^2$, взяв граничные значения \mathbf{c} обобщенными пробными $x \in X$ вида

$$x = (\varphi, x) = \int_{\Gamma} \varphi x(t) dt, \quad \int_{\Gamma} \partial \varphi x(t) dt.$$

Сравнивая граничную задачу (5)—(6) с обычной задачей Дирихле, еще раз отметим, что функция $\xi = \xi(t)$, которая, согласно (6), диктует граничное поведение искомого решения, является нигде не дифференцируемой, и в том смысле, как это имеет место в соответствующем собо-

левском классе $u \in W = W_2^2$, нормальных производных просто не существует.

Аналогичная задаче (5)—(6) задача возникает для

наилучшего прогноза

$$\widehat{\xi}(t) = E(\xi(t)/\mathfrak{B}), \quad t \subseteq S,$$

по данным \mathfrak{B} о случайном источнике η вне области S. Оказывается, функция $u(t) = \widehat{\xi}(t)$, $t \in S$, удовлетворяет уравнению

 $Lu = 0 \tag{7}$

(с $L=\Delta$) в области S, и возникает вопрос, как по данным $\mathfrak B$ сформировать надлежащие граничные условия, которые среди всех решений в (7) выделили бы искомое $u=\widehat{\xi}$. Уточним, что данные об источнике непосредственно доступны с помощью измерений вида $(g,\eta), g\in \mathfrak S_2(T)$ с g(t)=0 в S, и здесь, оказывается, достаточно ограничнться лишь некоторой полной системой решений сопряженного уравнения $L^*g=0$ ($L^*=\Delta$) в дополнительной к S области $S^+=T\setminus (S\cup \Gamma)$, с помощью которой для соответствующей системы обобщенных граничных точек $x=L^*g\in X$ граничные условия можно задать в форме

 $(x, u) = (x, \xi) = (g, \eta).$ (8)

Помимо внешнего отличия граничной задачи (7)—(8) от традиционных задач для оператора Лапласа $L=\Delta$ в пространстве \mathcal{L}_2 , когда решение принадлежит соответствующему соболевскому классу $W=W_2^2$, а сами граничные условия формируются с помощью надлежащих линейных комбинаций $c_1u+c_2\partial u$ искомой функции и ее нормальной производной, в задаче (7)—(8) приходится иметь дело с необычно плохими обобщенными функциями—скажем, реализация η в правой части (8) представляет собой результат применения оператора Лапласа к нигде не дифференцируемой функции, и, как уже отмечалось, производных ∂u в прямом смысле просто не существует.

С помощью стохастического дифференциального уравнения вида (1) в области $T \subseteq R^t$ с общим (линейным) дифференциальным оператором

$$L = \sum_{k} a_{k} \partial^{k}$$

и «случайным источником» $f=\eta$, представленным обобщенной случайной функцией того или иного типа, можно

описать многие важные теоретико-вероятностные модели, для которых возникают все вопросы, затронутые на примере (1) с $L=\Delta$. Так, для общего уравнения (1) возникает вопрос о выделении соответствующего функционального класса $u\in W$, в котором решение будет единственным в области $T\subseteq R^d$; при рассмотрении этого уравнения в той пли иной области $S\subseteq T$ возникает вопрос о соответствующем классе граничных условий

$$u|_{\mathbf{r}} = \dots ? \tag{9}$$

на границе $\Gamma = \partial S$, которые, будучи заданными произвольно, выделяли бы единственное в S решение, и здесь необходимо найти подход к самому определению надлежащих граничных значений обобщенных функций $u=(x,u), x\in C_0^\infty(S)$. Различным аспектам такого рода вопросов, являющихся фундаментальными для теории пифференциальных уравнений в частных производных, посвящены многочисленные исследования, важное место в которых, начиная со знаменитых работ С. Л. Соболева *), занимают общие теоретико-функциональные методы — одним из наиболее обширных источников здесь может служить фундаментальная серия работ Ж.-Л. Лионса и Э. Маджениса **). К этой области относится и предлатаемый нами подход к поставленному в (9) вопросу о граничных условиях для обобщенных случайных функций ***). Он основан на введении соответствующих обобщенных пробных функций $x \in X \supseteq C_0^{\infty}(T)$ и предлагает в качестве класса единственности использовать пространство обобщенных функций $u \in W$, определяемых условием

^{*)} Соболев С. Л. Некоторые применения функционального анализа в математической физике.— Л.: Изд-во ЛГУ, 1950 (2-е изд.— М.: Наука, 1989).

^{**)} Лионс Ж.-Л., Мадженис Э. Неоднородные граничные задачи и их приложения. В 3-х т.— М.: Мир, 1971.

^{****)} Розанов Ю. А. Обобщенная задача Дирихле // Докл. АН СССР.— 1982.— Т. 266, № 5.— С. 1067—1069; из последующих работ см., например, Розанов Ю. А. Марковские случайные поля и граничные задачи для стохастических уравнений в частных производных // Теор. вероятн. и ее примен.— 1988.— Т. 32, № 1.— С. 3—34. Другие подходы к некоторым постановкам граничных задач для случайных функций имеются, например, в работах: Гихман И. И. Стохастические дифференциальные уравнения с частными производными // Теория случайных процессов.— Киев: Наукова думка.— 1980.— № 8.— С. 20—31; Ве п-fatto G., Gallavotti G., Nicolo F. Elliptic equations and Gaussian processes // J. Funkt. Anal.— 1980.— V. 36.— Р. 343—400.

непрерывности u=(x, u) по $x \in C_0^{\infty}(T)$ в X, а общие граничные условия в (9) на границе $\Gamma = \partial S$ области $S \subseteq T$ задавать теми или иными граничными значениями (x, u) с номощью обобщенных пробных $x \in X$, $\operatorname{supp} x \subseteq \Gamma$. На этом пути можно охарактеризовать все возможные граничные условия, при которых имеется единственное решение уравнения (1) в S — уточним: в классе $u \in$ $\in \mathbf{W}(S)$, который получается как сужение \mathbf{W} в области $S \subseteq T$. Отметим, что в детермицированном случае преддагаемый подход можно с успехом применить ко многим задачам теории дифференциальных уравнений в частных производных — скажем, в случае эллиптических уравнений он дает решение известных граничных задач в соболевских классах W; более того, используемая в нем схема легко может быть изменена применительно к различным функциональным классам, связанным с теми или иными граничными задачами. Отметим одно важное обстоятельство, которое нужно

иметь в виду при рассмотрении обобщенных случайных функций. Возможность постановки тех или иных граничных задач обобщенного дифференциального уравнения (1) существенно зависят от его правой части f, диктующей вместе с оператором L выбор соответствующего функционального класса W ∋ u. Говоря о граничных условиях на $u=\xi$ в области S, естественно считать, что их соблюдение целиком определяется поведением \$ в окрестности границы $\Gamma = \partial S$, а значит эти условия целиком определяются событиями из граничной о-ангебры $\mathfrak{A}(\Gamma)$ — см. (4). При слишком пррегулярной правой части $f = \eta$ питересующее нас решение $u = \xi$ может порождать лишь тривиальную о-алгебру $\mathfrak{A}(\Gamma)$, и означает, что его нельзя охарактеризовать никакими гранцчными условиями; для примера укажем на уравнение (1) с оператором Лапласа $L=\Delta$ и гауссовским «белым шумом» $j=\eta$ на соболевском пространстве когда в качестве и = \$ мы получаем обобщенную случайную функцию тина «белого шума» на $\mathscr{L}_2(S)$. \Box

В теоретико-вероятностной модели, описываемой общим стохастическим уравнением (1), возникает целый ряд традиционных для теории случайных функций задач, таких как нахождение вероятностных характеристик решения $u=\xi$ (например, корреляционной функции случайного поля ξ в области $T\subseteq R^d$), различных задач прогнозирования, задач о характеризации

поведения реализаций/траекторий случайного поля & и др.

Скажем, рассматривая решение $u=\xi$ общего стохастического уравнения (1) как обобщенную функцию со значениями $(\varphi, \xi) \in H$ в гильбертовом пространстве $H=\mathcal{L}_2(\Omega)$ на вероятностном Ω , естественно поставить вопрос: а будет ян его реализация $\xi_\omega=(\varphi, \xi)_\omega$ при отдельном исходе $\omega\in\Omega$ обобщенной функцией переменного $\varphi\in C_0^\infty(T)$, т. е. будет ли она липейной и непрерывной относительно сходимости в пространстве Шварца $\mathcal{D}=C_0^\infty(T)$? А если будет, то удовлетворяет ли $u=\xi_\omega$ обобщенному дифференциальному уравнению (1) с сответствующей правой частью $f=\eta_\omega$? Ответ на эти вепросы положителен для надлежащих эквивалентных молификаций $u=\xi, f=\eta^*$).

Обративнись для примера к реализациям $u=\xi$ в стохастическом уравнении (1) с оператором Лапласа $L=\Delta$ и случайным источником /= η типа «белого шума» на соболевском пространстве $W_2^1(T)$ в области $T \subseteq R^T$ евклинова д-мерного пространства, отметим, что реализации но столь плохи, что в шкале соболевских пространств даже локальное включение $v_{\omega} \in W_2^{-q}$ возможно лишь для q > d/2 + 1; при большой размерности d это дает также плохую обобщенную функцию ξ_{ω} типа $\xi_{\omega} \in W_{\frac{1}{2}}^{-q+2}$. Несмотря на это, обобщенная задача Дирихле для уравнения $Lu=0 \quad (L=\Delta)$ в области $S \subseteq T$ с условиями на границе $\Gamma = \partial \hat{S}$ в форме $(x, u) = (x, \xi)$, supp $x \subseteq \Gamma$, заданными с помощью обобщенных пробных $x \in X$, и меет единственным решением гармойнческую функцию v=u(t), $t \in S$, допускающую посредством данных граничных условий «склейку» с обобщенной функцией ξ в не области S, в целом составляя обобщенную функцию типа $u{\in}W_2^{-q+2}$.

Как теоретико-вероятностная модель стохастическое уравнение (1) наибольний интерес представляет в случае источника $f=\eta$, который описывается обобщенной

^{*)} Эти вопросы тесно связаны с известными результатамя о вероятностных мерах в счетно-гильбертовых пространствах (теоремой Сазонова — Минлоса), но как-то в свое время не получиля должного внимания — см., например. Гельфанл И. М., Виленкин И. Я. Обобщенные функции. Т. 4. Некоторые применения гармонического анализа.— М.: Физматтиз, 1962. Относительно ответа на эти вопросы см., напримр. Itô K. Foundations of sichastic differential equations in infinite dimensional spaces // Series in Appl. Math. SIAM.— 1984.— V. 47.

случайной функцией $\eta = (\varphi, \eta)$, $\varphi \in C_0^\infty(T)$, с независимыми значениями. Естественно возникает вопрос о том или ином достаточно общем представлении случайных функций этого типа, апалогичном известному представлению случайных процессов с независимыми приращениями, и здесь важным примером может служить общее стохастическое представление для функций $\eta = (\varphi, \eta)$, непрерывных по $\varphi \in C_0^\infty(T)$ в пространстве $\mathcal{F} = \mathcal{L}_2(T)$, аналогичное представлению Леви — Ито для стохастических мер с пезависимыми значениями *).

В случае источника $f = \eta$ с независимыми значениями одним из характерных свойств решения $u=\xi$ общего стохастического дифференциального уравнения (1) является марковское свойство, которое для $\xi = (x, \xi)$ с функциональным переменным $x \in X$ означает, что поведение ξ в любой области $S \subseteq T$ при данных граничных значениях (x, ξ) , supp $x \subseteq \Gamma$, на грапице $\Gamma = \partial S$ пе зависит от поведения § вне S. Более того, всякое обобщенное гауссовское поле & с так называемым устойчивым марковским свойством может быть описано уравнением (1) с надлежащим локальным оператором L и гауссовским «белым шумом» $f = \eta$ на соответствующем локальном функциональном пространстве $\mathscr{F} \supseteq C_0^\infty(T);$ поясним: устойчивость марковского свойства означает его сохранение в области S при расширении соответствующих граничных условий - отсутствие такой устойчивости типично, например, для обобщенных случайных полей с независимыми значениями **).

Как и для всякой теоретико-вероятностной модели. для стохастического уравнения (1) возникают «обратные задачи» — по имеющимся статистическим данным идентифицировать (оценить) неизвестные параметры — скажем, неизвестное среднее, возникающее за счет детерминированной составляющей в источнике $f = \eta$, или неизвестные коэффициенты самого оператора $L = \sum_k a_k \partial^k$. Для решения этих задач можно использовать общие подходы математической статистики, скажем, основанные на о т-

**) По этому поводу см., например, Розанов Ю. А. Марков-

ские случайные поля. - М.: Наука, 1981.

^{*)} Задача описания обобщенных случайных функций с независимыми значениями ставилась уже давно—см., например, Гельфанд И. М., Виленкин Н. Я. в примечании на с. 00.

но шенпн правдоподобпя (если оно существует!). Понятно, что здесь сразу же возникает вопрос о существовании плотности для распределений вероятностей решения $u=\xi$ уравнения (1) при различных параметрах в том или ином функциональном пространстве, а также вопрос о возможности безошибочной идентификации тех или иных параметров, различие в которых приводит к взаимно сингулярным распределениям. В связи с последним возникает много на первый взгляд совершенно неожиданного. Например, для стационарного гауссовского поля ξ на d-мерном евклидовом пространстве R^d со спектральной плотностью вида

$$1/\mathscr{P}(i\lambda)$$
, $\lambda \in R^d$, где $\mathscr{P}(i\lambda) = \sum_{|\mathbf{k}| \leqslant 2p} a_{\mathbf{k}} (i\lambda)^k \geqslant 0$

— полином стенени 2p, которое может быть описано как решение $u=\xi$ уравнения (1) с надлежащим случайным источником $f=\eta$ и эллиптическим оператором

$$L = \mathscr{P} = \sum_{|h| \leqslant 2p} a_k \partial^h.$$

при соотношении

по отдельной реализации $\xi = (\varphi, \xi)$, $\varphi \in C_0^\infty(S)$, в сколь угодно малой области $S \subseteq R^1$ безошибочно определяются все коэффициенты a_k , $|k| \le 2p$ (это радикально отличается от того, что известно для стационарных процессов авторегрессии, отвечающих случаю d=1). \square

В заключение отметим, что изложение в целом предполагает известными основные элементы функционального анализа и теории вероятностей, но не требует какихлибо специальных сведений из теории дифференциальных уравнений *), хотя зпакомство с ней, особенно в части различного типа граничных задач. сделает более полным восприятие предлагаемого материала (в числе вспомогательных сведений содержащего элементы теории обобщенных функций, преобразований Фурье и др.).

^{*)} Из многочисленных и очень разных руководств по теория дифференциальных уравнений укажем здесь: Владимиров В. С. Уравнения математической физики.— 5-е изд.— М.: Наука, 1988; Ладыженская О. А. Краевые задачи математической физики.— М.: Наука, 1973; Михайлов В. П. Дифференциальные уравнения в частных производных.— 2-е изд.— М.: Наука, 1983; Хермандер Л. Анализ линейных дифференциальных операторов с частными производными: В 4 т.— М.: Мир, 1986—1989.

ОБОБЩЕННЫЕ СЛУЧАЙНЫЕ ФУНКЦИИ И ИХ РЕАЛИЗАЦИИ

§ 1. Некоторые вводные понятия

1° Обобщенные случайные функции. Говоря о случай пости, мы будем иметь в виду зависимость от элементарного события $\omega \in \Omega$ из вероятностного пространства $(\Omega, \mathfrak{A}, P)$ с мерой P = P(A) на σ -алгебре событий $A \in \mathfrak{A}$. Так, случайные величины ξ (действительные или комплексные) с конечным математическим ожиданием

$$E\xi = \int_{\Omega} \xi(\omega) P(d\omega)$$

суть интегрируемые функции $\xi = \xi(\omega)$, $\omega \in \Omega$. Будет широко использоваться гильбертово пространство $\mathbf{H} = \mathcal{L}_2(\Omega)$ случайных величин ξ с нормой

$$\|\xi\|_H = (E|\xi|)^2)^{1/2} < \infty,$$

в котором скалярное произведение $\xi,\ \eta \in H$ есть

$$\langle \xi, \eta \rangle_H = E \xi \overline{\eta};$$

вдесь и далее черта сверху означает операцию перехода к комплексно-сопряженным величинам/функциям (не путать с операцией замыкания, которая будет обозначаться скобками $[\cdot]$).

Основным объектом нашего интереса будут обобщенные случайные функции, описывающие те или иные случайные поля. При этом под обобщенной случайной функцией в области $T \subseteq R^t$ (открытом множестве T в d-мерном евклидовом пространстве R^t) мы будем понимать обобщенную векторную функцию

$$\xi = (\varphi, \xi), \quad \varphi \in \mathscr{D} = C_0^{\infty}(T),$$

со значениями $(\phi, \xi) \in \mathbf{H}$ в гильбертовом пространстве H случайных величин. Это заключает в себе линейность и непрерывность функции $\xi = (\phi, \xi)$ в ее зависимости от $npo \delta hb x \phi \in \mathcal{D}$

— уточним: $\|(\varphi_n, \xi) - (\varphi, \xi)\|_H \to 0$ при $\varphi_n \to \varphi$ в пространстве $\mathcal{D} = C_0^{\infty}(T)$. Основными характеристиками такой функции ξ являются среднее значение

$$(\varphi, A) = E(\varphi, \xi), \quad \varphi \in \mathcal{D},$$

и определениая для каждого $u \in \mathcal{D}$ корреляционная функция

 $(\varphi, Bu) = E(\varphi, \xi) (\overline{u, \xi}), \quad \varphi \in \mathcal{D},$

которая представляет собой симметрическую положительпо-определенную билинейную форму

$$\langle u, v \rangle = (u, Bv), \quad u, v \in \mathcal{D},$$
 (1.1)

а именно

$$\langle u, v \rangle = \langle \overline{v, u} \rangle, \quad \langle u, u \rangle \geqslant 0,$$

для любых элементов на $\mathcal{D},$ и для любых их линейных комбинаций

$$\left\langle \sum_{k} a_{k} u_{k}, \sum_{j} b_{j} v_{j} \right\rangle = \sum_{k,j} a_{k} \overline{b}_{j} \left\langle u_{k}, v_{j} \right\rangle. \quad \Box$$

Напомним, что $\mathcal{D} = C_0^\infty(T)$ есть пространство бесконечно дифференцируемых функций $\varphi = \varphi(t)$, $t = (t_1, \ldots, t_d) \in T$, с компактными носителями $\sup \varphi \subseteq T$, и сходимость $\varphi_n \to \varphi$ в нем означает, что для данных φ_n имеется компакт $\mathcal{H} \subseteq T$, где сосредоточены носители $\sup \varphi_n \subseteq \mathcal{H}$. и все производные

$$\partial^k \varphi_n \to \partial^k \varphi$$

сходятся равномерно; здесь и далее $\partial^k = \partial^{|k|}/\partial t_1^{k_1} \dots \partial t_d^{k_d}$ указывает производную порядка $|k| = k_1 + \dots + k_d$ по переменным t_1, \dots, t_d . Отметим, что при носителях ѕирр $\phi_n \subseteq \mathcal{H}$ из компакта $\mathcal{H} \subseteq T$ равномерная сходимость $\partial^k \phi_n \to \partial^k \phi$ всех производных равносильна их сходимости в \mathcal{L}_2 -норме:

$$\|\,\partial^h \varphi_n - \partial^h \varphi\,\|_{\mathcal{L}_2}^2 = \int |\,\partial^h \varphi_n - \partial^h \varphi\,|^2 dt \leqslant C \,\max|\,\partial^h \varphi_n - \partial^h \varphi\,|^2 {\longrightarrow}\, 0.$$

В этом легко убедиться, например, взяв для $u \in \mathcal{D}$ представление

$$u(t) = \int_{-\infty}^{t_1} \dots \int_{-\infty}^{t_d} \partial^l u \, dt, \quad \partial^l = \partial^d / \partial t_1 \dots \partial t_d,$$

и вытекающее из него при $\sup u \subseteq \mathcal{H}$ неравенство

$$\max |u(t)| \leq C \left(\int_{\mathcal{H}} |\partial^{l} u|^{2} dt \right)^{1/2},$$

которое нужно применить ко всем производным $u=\partial^k \varphi_n-\partial^k \varphi$. Гильбертово пространство $\mathscr{L}_2=\mathscr{L}_2(T)$ измеримых функций $u=u(t),\ t\in T,$ с нормой

$$\|u\|_{\mathcal{L}_2} = \left(\int_T |u(t)|^2 dt\right)^{1/2}$$

и скалярным произведением

$$\langle u, v \rangle_{\mathscr{Q}_2} = \int_T u(t) \overline{v(t)} dt, \quad u, v \in \mathscr{L}_2,$$

будет широко использоваться в дальнейшем.

Имея дело со скалярными обобщенными функциями

$$f = (\varphi, f), \quad \varphi \in \mathcal{D},$$

действительными или комплексными, их совокупность будем обозначать как \mathcal{D}^* . Как обычно, будем отождествлять обобщенную функцию $f \in \mathcal{D}^*$ с локально интегрируемой функцией f(t), $t \in T$, если

$$f = (\varphi, f) = \int \varphi(t) f(t) dt$$
. $\varphi \in \mathcal{D}$.

Для такого рода $f \in \mathcal{D}^*$ комплексно-сопряженная функция есть, очевидно,

$$\overline{f} = (\varphi, \overline{f}) = (\overline{\varphi}, f), \quad \varphi \in \mathcal{D},$$

и в этой форме операция перехода к комплексно-сопряженным обобщенным функциям переносится на произвольные $f \in \mathcal{D}^*$.

Напомним так называемое разложение единицы

$$1 = \sum_{j} w_{j}(t), \ t \in T_{loc}.$$

которое имеет место для любого покрытия замыкания $[T_{1oc}]$ ограниченной области T_{1oc} системой областей $T_j \subseteq T$, надлежаще взятых в конечном числе $w_j \in C_0^\infty(T_j)$. Указанное разложение позволяет, например, определить каждую функцию $\phi \in C_0^\infty(T)$ по ее локализациям $w_j \phi$ в любой системе областей T_j , покрывающих $T_{1oc} \cong \sup \phi$,

а именно

$$\varphi = \sum_{j} w_{j} \varphi;$$

соответственно определяется каждая обобщенная функция

$$f = (\varphi, f) = \sum_{j} (w_j \varphi, f) \equiv \sum_{j} w_j f.$$

Напомним еще важное для всего дальнейшего понятия носителя supp f, представляющего минимальное замкнутое множество, в дополнении к которому S=T supp f обобщенная функция f=0, т. е. $(\varphi, f)=0$ $\varphi \in C_0^\infty(S)$. \square

Пространство $\mathscr{D}=C_0^\infty(T)$ с определенной в нем сходимостью можно рассматривать как объединение

$$\mathscr{D} = \bigcup \mathring{W}_{2}^{\infty} \left(T_{1oc} \right)$$

по ограниченным областям $T_{\rm loc}$ с замыканием $[T_{
m loc}] \subset T$ счетно-гильбертовых пространств $\overset{\circ}{W}_2^{\infty}(T_{
m loc})$, каждое из которых получается пополнением функций $\mathfrak{q} \subset C_0^{\infty}(T_{
m loc})$ относительно системы норм

$$\|\varphi\|_p = \left(\sum_{|k| \le p} \int_{T_{100}} |\partial^k \varphi|^2 dt\right)^{1/2}, \quad p = 0, 1, \dots,$$

и представляет собой пересечение

$$\mathring{W}_{2}^{\infty}\left(T_{\mathrm{loc}}\right) = \bigcap_{p} \ \mathring{W}_{2}^{p}\left(T_{\mathrm{loc}}\right)$$

известных соболевских пространств $\mathring{W}_{2}^{p}(T_{10c})$ — пополнений $C_{0}^{\infty}(T_{10c})$ отпосительно соответствующей нормы $\|\phi\|_{p}$; поясним, что при естественном вложении $C_{0}^{\infty}(T_{10c}) \subseteq C_{0}^{\infty}(T)$ сходимость функций $\phi_{n} \in C_{0}^{\infty}(T_{10c})$ в пространстве $\mathring{W}_{2}^{\infty}(T_{10c})$ равносильна равномерной сходимости в области T всех их производных и, в частности, предельные $\phi \in \mathring{W}_{2}^{\infty}(T_{10c})$ суть бесконечно дифференцируемые функции с носителями $\sup \phi \in [T_{10c}]$. Понятно, что сходимость функций $\phi_{n} \to \phi$ в пространстве $\mathscr{D} = C_{0}^{\infty}(T)$ означает их принадлежность какому-либо пространству $\mathring{W}_{2}^{\infty}(T_{10c})$ и сходимость в нем $\phi_{n} \to \phi$.

Мы увидим, что для выяснения тех или иных свойств обобщенной случайной функции $\xi = (u, \xi), u \in \mathcal{D}$, может

быть полезпой ее характеризация с номощью «пробных» $u \in W$ из более ишрокого, чем \mathcal{D} , функционального класса $W = \{\mathcal{D}\}$, который мы введем как пополнение $\mathcal{D} = C_{\mathrm{B}}^{\infty}(T)$ относительно скалярного произведения

$$\langle u, v \rangle_{w} = \langle u, v \rangle, \quad u. \ v \in \mathcal{D},$$
 (1.2)

задаваемого формой (1.1).

 2° Пространства типа W. Обратимся к произвольному гильбертову пространству типа $W = [\mathcal{D}]$, которое получается путем факторизации и пополнения $\mathcal{D} = C_0^{\infty}(T)$ относительно скалярного произведения (1.2), заданного с помощью произвольной симметрической положительно-определенной билинейной формы $\langle u, v \rangle$, $u, v \in \mathcal{D}$. непрерывной вместе с

$$\|\varphi\|_{w} = \langle \varphi, \varphi \rangle^{1/2}, \quad \varphi \in \mathcal{D},$$

относительно сходимости в пространстве $\mathcal{D} = C_0^{\infty}(T)$. Введем оператор

 $B \colon W \to \mathscr{D}^*$

для каждого элемента $u \in W$, определяющего обобщенную функцию $x = Bu \in \mathcal{D}^*$ по формуле

$$x = (\varphi, x) \equiv \langle \varphi, u \rangle_w, \quad \varphi \in \mathcal{D}.$$
 (1.3)

В комплексном случае наряду с В введем дополнятельно комплексно-сопряженный линейный оператор

$$\mathcal{P} = \overline{B}$$
: $\mathcal{P}u = \overline{Bu}$, $u \in W$.

— понятно, что в действительном случае мы имеем $\mathscr{P} = B$. В любом случае

$$X = BW = \overline{PW}$$

есть линейное пространство, поскольку для любых (комплексных) λ и $x = Bu \in X$ мы имеем $\overline{\lambda}u \in W$, $\lambda x = B(\overline{\lambda}u) \in X$,

Обобщенная функция $x = Bu \in \mathcal{D}^*$ равна 0 тогда и только тогда, когда u = 0 в W, поскольку \mathcal{D} плотно в $W = [\mathcal{D}]$ и $(\phi, x) = \langle \phi, u \rangle_w = 0$ при всех $\phi \in \mathcal{D}$ тогда и только тогда, когда $\|u\|_w = 0$.

Обратимый оператор $B\colon W\to \mathcal{D}^*$ переносит на пространство $X=BW\subseteq \mathcal{D}^*$ порму

анство $X = B n = 20^n$ порму $\|x\|_x = \|u\|_w, \quad x = B u, \quad u \in W, \tag{1.4}$

относительно которой X будет гильбертовым пространством со скалярным произведением

$$\langle Bu, Bv \rangle_X = \langle u, v \rangle_W, \quad u, v \in W. \square$$

Каждая обобщенная функция, $x \in X \subseteq \mathcal{D}^*$ представима в виде

$$x = (\varphi, x) = \langle \varphi, v \rangle_w, \quad \varphi \in W,$$

с соответствующим $v = B^{-1}x \in W$ и по непрерывности относительно $\|q\|_W$ может быть доопределена на всех $u \in W$, а имению, для $u = \lim q$ как предела функций $q \in \mathcal{D}$ в $W = [\mathcal{D}]$:

$$(u, x) = \lim (\varphi, x) = \langle u, v \rangle_w. \tag{1.5}$$

Согласно этому, (u, x) = 0 для всех $x \in X$ тогда и только тогда, когда u = 0. Учитывая это, отождествим каждый элемент $u \in W$ с соответствующей функцией

$$u = (x, u) \equiv (u, x), \quad x \in X,$$
 (1.6)

обобщенного переменного $x \in X \subseteq \mathcal{D}^*$, определенной как

$$(x, u) \approx (u, x)$$
:

вдесь величины (x, n) можно рассматривать как результат опробывания функций $n = \lim \varphi \in W$ с помощью пробиых $x \in X$.

Условившись называть обобщенные функции $x \in X \equiv \mathcal{D}^*$ пробиьми для $u \in W$, дадим их характеризацию в следующей форме.

Теорема. Обобщенная функция $x = (\varphi, x)$, $\varphi \in \mathcal{D}$, является пробной для $u \in W$ тогда и только тогда, когду она непрерывна относительно $\|\varphi\|_W$.

Доказательство очевидно. Ноясимм, что указанного тина функция $x = (\varphi, x)$ задает линейный иепрерывный функционал (φ, x) от $\varphi \in \mathcal{D}$ в гильбертовом пространстве $W = [\mathcal{D}]$, который согласно представлению Рисса $(\varphi, x) = (\varphi, u)_w$ с соответствующим $u \in W$ совпадает с x = Bu (см. (1.3)); при этом

$$\sup_{w \in W} \|(\phi, x)\| = \|u\|_W + \|x\|_X,$$

согласно (1.4).

Всякий линейный непрерывный функционал $x = (\varphi, x)$, $\varphi \in \mathcal{D}$, на гильбертовом пространстве $W = [\mathcal{D}]$ с плотным в нем \mathcal{D} можно однозначно отождествить с соответствую-

щим $x \in W^*$ из сопряженного пространства W^* , и в этом смысле мы имеем X = BW в качестве сопряженного пространства к W,

 $X = W^*$;

при этом мы имеем для $x \in X = W^*$ соответствующее представление Pucca в виде

$$x = (\varphi, x) = \langle \varphi, u \rangle_w, \quad \varphi \in W.$$

 $\mathbf{c} \ u = B^{-1}x,$

22

 $(\varphi, x) = \langle \varphi, u \rangle_w = \langle Bu, B\varphi \rangle_x = \langle x, B\varphi \rangle_x = (x, \varphi) \quad (1.7)$

для всех $\phi \in W$, $x \in X$.

Понятно, что в (1.6) мы фактически отождествляем $W = [\mathcal{D}]$ с сопряженным пространством $W = X^*$. \square Рассматривая в схеме (1.2)—(1.7) пространства

$$W = [\mathcal{D}], \quad X = BW = W^*,$$

для указания их связи с $\mathscr{D}=C_0^\infty(T)$ в соответствующей области $T\subseteq R^d$ будем использовать обозначения

$$W = \mathring{V}(T), \quad X = \mathring{X}(T).$$
 (1.8)

Для различных $T=T_1,\ T_2$ в случае $T_1\subseteq T_2$ укажем на естественные вложения

$$\mathring{W}(T_1) \subseteq \mathring{W}(T_2), \quad \mathring{X}(T_1) \subseteq \mathring{X}(T_2),$$
 (1.9)

в котерых $W_1 = \overset{\circ}{W}(T_1), \ X_1 = W_1^*$ рассматриваются как подпространства в соответствующих $W_2 = \overset{\circ}{W}(T_2), \ X_2 = W_2^*$ — понятно, что речь идет о пространствах, отвечающих одной и той же форме

$$\langle u, v \rangle, \quad u, v \in C_0^{\infty}(T)$$

(см. (1.2) и далее). Именно, $W_1 = \left[C_0^{\infty} \left(T_1 \right) \right]$ непосредственно совпадает с замыканием $C_0^{\infty} \left(T_1 \right)$ в $W_2 = \left[C_0^{\infty} \left(T_2 \right) \right]$, а равенство

$$(\varphi, x) = \langle \varphi, u \rangle_{W_2}, \qquad \varphi \in C_0^{\infty}(T_1),$$

для $u \in W_1$ определяющее элемент $x \in X_1$ и имеющее смысл для всех $\varphi \in C_0^\infty(T_2)$, одновременно определяет $x \in X_2$,

$$x = (\varphi, x) = \langle \varphi, u \rangle_{W_2}, \quad \varphi \in C_0^{\infty}(T_2),$$

что позволяет рассматривать X_1 как подпространство $X_1 = BW_1$ в $X_2 = W_2^*$, получающееся с номощью соответствующего $B\colon W_2 \to X_2 = BW_2$; при этом в X_2 для $x \in X_1$ в представлении x = Bu с $u \in W_1 \subseteq W_2$ мы имеем

$$\|\,x\,\|_{X_2} = \|\,u\,\|_{W_2} = \|\,u\,\|_{W_1} = \|\,x\,\|_{X_1}.$$

Отметим. что $X_1=BW_1$ есть единственное «унитарное представление» сопряженного пространства $X_1=W_1^*$ с помощью подпространства $X_1\subseteq X_2$, и оно может быть получено факторизацией всех элементов $x\subseteq X_2$ по норме $\|x\|_{X_1}=\sup_{\|\phi\|_{W_1}\leqslant 1}|(\phi,x)|$. где верхняя грань берется по

 $\Phi \in C_0^\infty(T_1)$: при этом используемый в схеме (1.2)-(1.7) в области $T=T_2$ оператор B одновременно обслуживает эту схему и в области $T=T_1\subseteq T_2*$).

При данной выше интерпретации $W_1 \subseteq W_2$ справедливо следующее предложение.

Теорема. Пространство $W_1 \subseteq W_2$ состоит из всех функций $u \subseteq W_2$, обращающихся в 0 вне области $T_1 \subseteq T_2$. (Уточним: здесь имеется в виду, что (x, u) = 0 при носителе supp $x \subseteq T_1^c$ в дополнении к области T_1 .) Действительно. W_1 есть аннулятор для ортогонального дополнения $X_1^- = X_2 \ominus X_1$ к подпространству $X_1 = BW_1$ в $X = X_2$,

$$\parallel x\parallel_{X(T)} = \sup_{\parallel \phi \parallel \underset{W}{\circ} \downarrow \uparrow} \left\{ \parallel (\phi,x) \mid \leqslant \sup_{\parallel \phi \parallel \underset{W}{\circ} \downarrow \uparrow \downarrow} \left\{ \parallel (\phi,x) \mid = \parallel x\parallel \underset{X(T_2)}{\circ} \right\}$$

понятно, что это сужение может быть одним и тем же для совсем различных $x \in \mathring{X}(T_2)$, и $x \in \mathring{X}(T_1)$ как обобщенная функция в области T_1 (скажем, с носителем $\sup x \subset T_1$) может вовсе не быть элементом в $\mathring{X}(T_2)$; например, в случае $W = W(R^1)$ с нормой $\|u\|_W = \|u'\|_{\mathcal{L}_2}$, $u \in C_0^\infty(R^1)$, пространство $X = \mathring{X}(R^1)$ содержит пробные функции вида $x = \delta(t-a) - \delta(t-b)$, сужение которых в области $T \subset R^1$, содержащей точку t = a и не содержащей точку t = b, дает в этой области пробные функции $x = \delta(t-a)$, которые как дельта-функции $x = \delta(t-a)$, $t \in R^1$, на прямой R^1 невходят в $X = \mathring{X}(R^1)$.

^{*)} Подчеркием, что при вложении $X(T_1) \subseteq X(T_2)$ элементы $x \in X(T_1) \subseteq \mathcal{D}(T_1)^*$, представленные обобщенными функциями $x \in X(T_2) \subseteq \mathcal{D}(T_2)^*$ в области T_2 , суть сужение этих функций в $T_1 \subseteq T_2$ с нормой

а именно

$$(x, u) = \langle x, Bu \rangle_X = 0, \quad x \in X_1, \quad u \in W_1,$$

где для $X_1=BW_1=\left[BC_0^\infty(T_1)\right]$ принадлежность $x\in X_1^\Sigma$ можно охарактеризовать условием

$$\langle Bq, x \rangle_X = (q, x) = 0, \quad q \in C_0^\infty(T_1),$$

которое для обобщенной функции $x \in X$ означает, что есноситель supp x лежит в доподнении T_1^e к области T_1 . \square

Наряду со скалярными функциями u=(x,u) обобщенного леременного $x\in X\subseteq \mathcal{D}^*$, образующими соответствующее пространство $W=[\mathcal{D}]$, мы будем рассматривать случайные функции u=(x,u)— векторные функции со значениями в гильбертовом пространстве $\mathbf{H}=\mathcal{L}_2(\Omega)$ случайных величии — линейные п пепрерывные по $x\in X$: принадлежность к этому классу будем указывать записью $u\in \mathbf{W}$.

3° Пространства с воспроизводящим ядром. Для любой билинейной положительно определенной формы $\langle u,v\rangle$, непрерывной по $u,v\in\mathcal{D}$, существует случайная обобщенная функция $\xi=(\phi,\ \xi),\ \phi\in\mathcal{D}$, связанная с данной формой соотношением $(4.1)-\kappa$ этому мы еще вернемся. Рассматривая случайную обобщенную функцию $\xi=(\phi,\ \xi),\ \phi\in\mathcal{D}$, и ее корреляционную форму (4.1), можно воспользоваться непрерывностью $(\phi,\ \xi)$ в гильбертовом пространстве (ψ,ψ) и доопределить (ψ,ψ) до функции

$$\xi = (u, \xi), \quad u \in W,$$

на всем пространстве W. При этом мы будем иметь унитарное соответствие

$$W \ni u \leftrightarrow (u, \xi) \subseteq H_{\xi}$$

между W и подпространством $H_{\xi} \subseteq \mathbf{H}$ всех величин (u, ξ) , $u \in W$. Введенный формулой (1.3) оператор B назовем корреляционным оператором случайной обобщенной функции ξ . Легко видеть, что соответствующее пространство X = BW образовано всеми обобщенными функциями, допускающими представление

$$x = (\varphi, x) = E(\varphi, \xi) \overline{(u, \xi)}, \quad \varphi \in \mathcal{D},$$
 (1.10)

 $\mathfrak{C} \ u \in W \ (x = Bu)$, причем

$$\langle Bu, Bv \rangle_X = E(\overline{u, \xi})(v, \xi);$$

такое гильбертово X называют пространством с воспроизводящим ядром для ξ . Пространство W, отвечающее в нашей схеме форме (1.1), будем называть собственным пространством для случайной обобщенной функцип ξ . \square

Приведем два вспомогательных предложения относительно ли ней пых функций $\xi = (u, \xi)$ со значениями в гильбертовом пространстве **H**, рассматривая здесь переменное $u \in U$ в липейном пространстве U.

Пусть $\langle u, v \rangle$ есть произвольная симметрическая полежительно определения билинейная форма от $u, v \in U$.

Теорема. Существует функция $\xi = (u, \xi), u \in U$,

связанная с данной формой соотношением (1.1).

В частности, для $\hat{U} = \mathcal{D}$ и формы $\langle u, v \rangle$, непрерывной относительно сходимости пробных u, v в пространстве $\mathcal{D} = C_0^{\infty}(T)$, мы имеем здесь обобщенную случайную функцию $\xi = (u, \xi), u \in \mathcal{D}$.

Для доказательства обратимся к гильбертову пространству [U], которое получается факторизацией и пополнением исходного U относительно полупормы $\|u\| = (u, u)^{1/2}$. Имея в виду свободный выбор вероятностного пространства Ω , возьмем его так, чтобы соответствующее гильбертово пространство \mathbf{H} случайных величин имелобы размерность $\dim \mathbf{H} \geqslant \dim [U]^*$). Возьмем любой изометрический оператор $\mathcal{J}\colon U \to \mathbf{H}$ и положим

$$(u, \xi) = \mathcal{I}u, \quad u \in U.$$

Очевидно, что для функции $\xi = (u, \xi)$, $u \in U$, будет справедливо соотпошение (4.1).

Рассмотрим тенерь свойство непрерывности случайной функции $\xi = (u, \xi)$ относительно той или иной полунормы $\|u\|$ неременного $u \in U$.

 $\dot{\mathbf{T}}$ е $\dot{\mathbf{p}}$ е \mathbf{m} а. $\dot{\mathbf{C}}$ лабая непрерывность в \mathbf{H} линейной функции $\boldsymbol{\xi} = (u, \boldsymbol{\xi})$ равносильна ее сильной непрерывности.

^{*)} Здесь можно взять, например, семейство независимых гауссовских величин (в надлежащем числе $\tau \geqslant \dim U$) — ях замкнутая линейная оболочка $H \subseteq H$ будет подпространством размерности τ ; используя изометрический оператор $\mathcal{I}: U \to H$, мы получим гауссоовскую функцию $(u, \xi) = \mathcal{I}u, u \in U$, для которой все величины $(u, \xi), u \in U$, являются гауссовскими.

Это есть следствие известного принцила равномерной ограниченности Банаха — Штейнгауза. Действительно, непрерывность $\langle (u, \xi), \eta \rangle_{\mathbf{H}}$ по $\|u\|$ равносильна ограниченности $\langle (u, \xi), \eta \rangle_{\mathbf{H}} \leqslant C_{\eta}$ при $\|u\| \leqslant 1$, и если такая ограниченность имеет место для всех $\eta \in \mathbf{H}$, то $\|(u, \xi)\|_{\mathbf{H}} \leqslant C$ при $\|u\| \leqslant 1$, что равносильно сильной непрерывности (u, ξ) по $\|u\|$. \square

Рассматривая то или иное гильбертово $X \subseteq \mathcal{D}^*$ на предмет того, является ли оно пространством с воспроиз-

водящим ядром, можно дать следующий критерий.

Теорема. Гильбертово пространство $X \subseteq \mathcal{D}^*$ обобщенных функций $x = (\varphi, x), \ \varphi \subseteq \mathcal{D}, \ является пространством с воспроизводящим ядром тогда и только тогда, когда для всех <math>\varphi \in \mathcal{D}$ величина

$$\|q\|_W = \sup_{\|\alpha\|_X \leqslant 1} |(q, x)|$$

конечна и непрерывна по ϕ относительно сходимости $\mathscr{D}=C_0^\infty(T).$

Понятно, что речь идет о том, может ли данное $X \subseteq$ $\leq \mathcal{D}^*$ быть реализовано в нашей схеме (1.2)—(1.7) как $X = BW = W^*$ с соответствующим $W = [\mathcal{D}]$. Необходимость условия теоремы очевидна в силу того, что если Х — пространство с воспроизводящим ядром для обобщенной случайной функции $\xi = (\varphi, \xi), \varphi \in \mathcal{D},$ то собственное для ξ пространство $W = [\mathcal{D}]$ совпадает с сопряженным пространством $W = X^*$. С другой стороны, при указанном в теореме условии каждая пробная функция $\phi \in \mathcal{D}$ задает линейный непрерывный функционал $\phi = (\phi, x)$ на $x \in X \subseteq \mathcal{D}^*$, н в этом смысле мы имеем вложение $\mathcal{D} \subseteq X^*$. Воспользовавшись представлением Рисса (φ, x) $=\langle x, B\varphi \rangle_{x}$, видим, что элементы $B\varphi$, $\varphi \in \mathcal{D}$, плотны в X, так как при $(\varphi, x) = 0$, $\varphi \in \mathcal{D}$, мы имеем дело с нулевой обобщенной функцией $x \in \mathcal{D}^*$, и, следовательно, x = 0в $X \subseteq \mathcal{D}^*$. Плотность совокупности $B\mathcal{D}$ в X для унитарного $B\colon X^* \to X$ означает плотпость $\mathscr D$ в гильбертовом $X^*=W$ с нормой $\|\phi\|_W=\sup_{\|x\|_X\leqslant 1}|\left(\phi,x\right)|,$ и, таким образом,

X является сопряженным к гильбертову пространству $W = [\mathcal{D}]$, $X = W^*$, что только и требовалось доказать, пришмая во внимание условие непрерывности $\|\phi\|_W$ относительно пробных $\phi \in \mathcal{D}$ в пространстве $\mathcal{D} = C_0^\infty(T)$,

которое лежит в основе определения пространств типа W в нашей схеме (1.2)-(1.7).

4° Обобщенные случайные функции и стохастические интегралы. Имея дело с той или иной случайной функцией $\xi = \xi(t), \ t \in T,$ локально интегрируемой в области $T \subseteq R^{T}$, можно рассматривать ее в обобщенном смысле как

$$\xi = (q, \xi) = \int q(t) \, \xi(t) \, dt, \quad q \in C_0^{\infty}(T). \tag{1.11}$$

используя ту или иную конструкцию взятого сирава интеграла — например, рассматривая функции со значениями в $H=\mathcal{L}_2(\Omega)$, можно использовать интеграл в гильбертовом H. В (1.11) мы имеем дело с обобщенной функцией $\xi=\xi(t)$, $t\equiv T$.

Аналогичная конструкция дает обобщенные функции

$$\xi = (\varphi, \xi) = \int \varphi(t) \, \eta(dt), \quad \varphi \in C_0^{\infty}(T). \quad (4.12)$$

с помощью взятого эдесь стохастического интеграла по стохастической мере— непрерывной в $H=\mathcal{L}_2(\Omega)$ аддитивной функции $\eta=\eta(A)$ на борелевских $A\subseteq T$. Скажем, это может быть стохастическая мера с некоррелированными (при непересекающихся $A\subseteq T$) значениями $\eta(A)$,

$$E\eta(A) = 0, \quad E|\eta(A)|^2 = \mu(A),$$

где $\mu\left(dt\right)$ — обычная σ -конечная мера, и тогда

$$E(\varphi, \xi) = 0, \quad E[(\varphi, \xi)]^2 = \int |\varphi(t)|^2 \mu(dt);$$

при $\mu(dt)=dt$ в (4.12) возникает так называемый «белый шум» $\xi=(\varphi,\,\xi),\,$ дия которого

$$E(\varphi, \xi) = 0, \quad E[(\varphi, \xi)]^2 = \|\varphi\|_{\mathscr{F}}^2$$

с нормой в $\mathcal{F} = \mathcal{L}_2(T)$.

(Условимся называть белым шумом на каком-либо гильбертовом пространстве $\mathscr{F} = [C_0^\infty(T)]$ обобщенную функцию $\xi = (\varphi, \, \xi)$ с указанным выше свойством по отношению к норме $\| \varphi \|_{\mathscr{F} - B} \mathscr{F}$.)

Отметим, что всякая обобщенная случайная функция $\xi = (\varphi, \xi)$, непрерывная по норме $\| \varphi_{\mathbb{F}} \|_{\mathcal{F}}$ в $\mathcal{F} = \mathcal{L}_2(T)$ и по непрерывности определенная на всем пространстве $\mathcal{L}_2(T) = [\mathcal{C}_0^{\infty}(T)]$. представима как (1.12), и можно сказать, что она является обобщенной функцией типа

28

стохастической меры, в качестве которой выступает

$$\eta(A) = (1_A, \xi).$$

связанная с $\xi = (\varphi, \xi)$, $\varphi \in \mathcal{L}_2(T)$, носредством индикаторов $\varphi = 1_A$ ограниченных борелевских множеств $A \subseteq T$ — очевидно, что здесь мы имеем дело с непрерывной в $\mathcal{H} = \mathcal{L}_2(\Omega)$ аддитивной функцией $\eta(A)$, $A \subseteq T$. Поясвим: положив

$$\int \varphi(t) \, \eta(dt) = \sum_{k} \varphi_{k} \eta(A_{k})$$

для простых функций $\varphi \in \mathcal{L}_2(T)$, каждая из которых отлична от 0 лишь в ограниченной области и принимает там не более конечного числа значений $\varphi(t) = \varphi_k$. $t \in A_k$, на непересекающихся $A_k \subseteq T$, мы получим

$$\int \varphi(t) \, \eta(dt) = (\varphi, \, \xi).$$

тто указывает на непрерывность введенного нами интеграла относительно нормы $\| \phi \|_{\mathscr{L}_2}$, и эта непрерывность позволяет предельным переходом определить соответствующий стохастический интеграл $\int \phi(t) \, \eta(dt)$ для всех $\phi \in \mathscr{L}_2(T)$. В целях согласования обозначений будем истользовать символическую запись

$$\eta(dt) = \xi(t) dt.$$

связывающую в (1.12) стохастическую меру $\eta(dt)$ с обобщенной случайной функцией $\xi = (\varphi, \xi)$. Отметим, что $\eta(dt) = \xi(t) dt$ вовсе не обязана быть стохастической мерой с некоррелированными значениями— скажем, для обычной функции $\xi = \xi(t)$ с

$$\int E |\xi(t)|^2 dt = C < \infty$$

мы имеем в (1.12) непрерывную по $\varphi \in \mathscr{L}_2(T)$ обобщенную функцию $\xi = (\varphi, \, \xi)$ с

$$E \mid (\varphi, \xi) \mid^2 \leqslant C \cdot \lVert \varphi \rVert_{\mathscr{L}_2}^2$$

и здесь $\eta(dt) = \xi(t) dt$ есть

$$\eta(A) = \int_A \xi(t) dt, \quad A \subseteq T.$$

Для «временно́го» интервала $T \subseteq R^1$ (например, $T = (a, \infty)$) произвольную непрерывную по $\varphi \in \mathcal{L}_2(T)$

обобщенную функцию $\xi = (\varphi, \xi)$ и отвечающую ей стохастическую меру $\eta(dt) = \xi(t) dt$ можно связать со случайным процессом

$$\eta_t=(1_{(a,t)},\,\xi),$$

вепрерывным по $t \geqslant a$ в $H = \mathscr{L}_2(\Omega)$, для которого

$$(\varphi,\xi) = \int \varphi(t) \, \eta(dt) = \int \varphi(t) \, d\eta_t, \quad \varphi \in C_0^{\infty}(T),$$

можно определить по данному η_t , $t \ge a$, с помощью взятого справа стохастического интеграла типа Римана — Стилтьеса. Поясним: с простых $\varphi(t) = \varphi(t_h)$, $t \in A_h = -(t_{h-1}, t_h]$, этот интеграл

$$\int_{a}^{b} \varphi(t) d\eta_{t} = \sum_{k} \varphi(t_{k}) \left[\eta_{t_{k}} - \eta_{t_{k-1}} \right]$$

распространяется предельным переходом на общие $\phi \in \mathscr{L}_2(T)$. Как следствие формулы интегрирования по частям здесь

$$(\varphi, \xi) = \int \varphi(t) d\eta_t - \int \varphi'(t) \eta_t dt, \quad \varphi \in C_0^{\infty}(T).$$
 (1.13)

В дальнейшем в ряде важных примеров нам встретятся случайные процессы $\xi = \xi_t$, состояние которых в момент $t \geq a$ определяется с помощью пробных $x \in C_0^\infty(G)$ в области $G \subseteq R^{t-1}$ величинами (x, ξ_t) , в их зависимости от переменного x, представляющих соответствующие обобщенные функции $\xi_t = (x, \xi_t)$. При рассмотрении такого рода процессов может быть использована следующая конструкция случайных функций в области $T = G \times (a, \infty)$, в которой «время» представлено переменным r > a в $t = (s, r) \subseteq T$ с «пространственным» переменным $s \subseteq G$.

Именно, пусть $\xi = \xi_t - \text{случайный процесс указанного}$ выше типа, для которого при каждой пробной $x \in C_0^\infty(G)$ мы имеем непрерывный в $H = \mathcal{L}_2(\Omega)$ «одномерный» процесс $(x, \, \xi_r), \, r \geqslant a, \, c$

$$E |(x, \xi_r)|^2 \leqslant C ||x||^2_{\mathscr{L}_2(G)}, \quad x \in C_0^{\infty}(G),$$

на каждом конечном интервале a < r < b. Взяв пробную $\varphi \in C_0^\infty(T)$ и рассматривая ее как функцию $\varphi = \varphi_r$ переменного r > a со значениями $\varphi_r = \varphi(s, r), s \in G$, из $C_0^\infty(G)$ для непрерывной в $\mathcal{L}_2(G)$ функции $\varphi = \varphi_r$ будем иметь непрерывную в $H = \mathcal{L}_2(\Omega)$ функцию $\varphi_r \xi_r = (\varphi_r, \xi_r)$

с интегралом типа Римана

$$(\varphi, \xi) = \int_{0}^{x} \varphi_r \xi_r \, dr \tag{1.14}$$

в его зависимости от $\mathfrak{q} \in \ell_0^\infty(T)$, определяющего обобщенную случайную функцию $\xi = (\mathfrak{q}, \xi)$ в области $T = G \times (a, b)$ с

$$E \mid (\varphi, \xi) \mid^2 \leqslant C \int \|\varphi_r\|_{\mathcal{Z}_2(G)}^2 dr, \quad \varphi \in G \vee (a, b).$$

на каждом копечном интервале a < r < b. Понятно, что сам интеграл (1.14) типа Римана определен, например, для всех кусочно-непрерывных функций $\varphi = \varphi_r$ — поясним, при $h \to 0$ и $\|\varphi_{r+h} - \varphi_r\|_{\mathscr{L}_2(G)} \to 0$ мы имеем

$$\begin{aligned} \| \varphi_{r+h} \xi_{r+h} - \varphi_r \xi_r \|_H &\leq \\ &\leq C \| \varphi_{r+h} - \varphi_r \|_{\mathscr{L}_{s(G)}} + \| (\varphi_r, \xi_{r+h}) - (\varphi_r, \xi_r) \|_H \to 0. \end{aligned}$$

Отметим, что, используя «первообразную»

$$\eta_r = \int_a^r \xi_r dr, \quad r \geqslant a,$$

задающую случайный процесс с состояниями

$$(x, \eta_r) = \int_0^r (x, \xi_r) dr, \quad x \in C_0^{\infty}(G).$$

обобщенную случайную функцию (1.14) можно представить в виде интеграла типа Римана — Стилтьеса

$$(\varphi, \xi) = \int \varphi_r d\eta_r \tag{1.15}$$

как предела в $H = \mathscr{L}_2(\Omega)$ интегральных сумм

$$\sum \varphi_{r_k} \left[\eta_{r_k} - \eta_{r_{k-1}} \right] = \sum_{k} \int_{r_{k-1}}^{r_k} \varphi_{r_k} \xi_r \, dr.$$

Обратимся к конструкции (4.15) с помощью общего стохастического интеграла типа Римана — Стилтьеса по непосредственно данному случайному процессу $\eta = \eta_r$, определяемого как предел

$$\int \varphi_r d\eta_r = \lim \sum_k \varphi_{r_k} \left[\eta_{r_k} - \eta_{r_{k-1}} \right]$$

соответствующих интегральных сумм в $H=\mathcal{L}_2(\Omega)$. Укаванный интеграл (1.15) существует для всех пробных $\varphi\in\mathcal{L}_2(T)$ и задает обобщенную случайную функцию $\xi=(\varphi,\ \xi)$, скажем, когда мы при каждом $x\in C_0^\infty(G)$ имеем дело с непрерывным в $H=\mathcal{L}_2(\Omega)$ процессом $(x,\ \eta_c),\ r\geqslant a$, и

$$E |(x, \eta_r)|^2 \leqslant C ||x||_{\mathscr{L}_{2}(G)}^2, \quad x \in C_0^{\infty}(G),$$

равномерно на каждом конечном интервале. Как уже фактически отмечалось, в этом случае для произвольных

$$q'_r = \left(\frac{\partial \varphi}{\partial r}\right)_r \in C_0^\infty(G)$$

функция $\phi_r'\eta_r = (\phi_r', \eta_r)$ является непрерывной, а интеграл типа ${
m Pnmana}$

$$-\int \varphi_r' \eta_r dr = \int \varphi_r d\eta_r \tag{1.16}$$

дает соответствующий интеграл (1.15) типа Римана — Стилтьеса. Важным примером здесь является случай процесса с некоррелированными приращениями

$$x\left[\eta_{r_k}-\eta_{r_{k-1}}\right]=\left(x,\,\eta_{r_k}\right)-\left(x,\,\eta_{r_{k-1}}\right), \quad x\in C_0^\infty(G),$$

для которых

$$E\left[\left(x, \eta_{r_{k}} - \eta_{r_{k-1}}\right)\right]^{2} \leqslant C \|x\|_{\mathcal{L}_{2}}^{2} (r_{k} - r_{k-1})$$

— в этом случае мы имеем

$$E\left|\int \varphi_r \, d\eta_r\right|^2 \leqslant C \int \|\varphi_r\|_{\mathscr{L}_2(G)}^2 \, dr$$

ив (1.15)

$$E | (\varphi, \xi) |^2 \leqslant C \| \varphi \|_{\mathscr{L}_{2}(T)}^2.$$
 (1.17)

Понятно, что при всех r>a непрерывные ξ , в (1.14) и η , в (1.15) однозначно определяются соответствующей обобщенной функцией $\xi=(\varphi,\,\xi),\,\,\varphi\in C_0^\infty(T),\,$ — например, взяв пробные $\varphi(s,\,r)=x(s)\,w(r)$ с $x\in C_0^\infty(G)$ и

$$w \rightarrow \mathbf{1}_{(r_1,r_2)}, \quad w' \rightarrow \delta\left(r-r_2\right) - \delta\left(r-r_1\right),$$

для произвольных $r_2 > r_1 > a$ получим

$$(x, \eta_{r_2}) - (x, \eta_{r_1}) = \lim (\varphi, \xi).$$

§ 2. Пространства пробных обобщенных функций

1° Пробные пространства типа W. Мы ввели линей иые непрерывные функции u=(x,u) обобщенного переменного $x\in X$, где $X\subseteq \mathcal{D}^*$ есть соответствующее пространство пробных обобщенных функций $x=(\varphi,x),\ \varphi\subseteq \mathcal{D}$, которые выделяются в \mathcal{D}^* тем, что они непрерывны относительно $\|\varphi\|_W$ в соответствующем $W=[\mathcal{D}]$ и наделены гильбертовой пормой

$$||x||_X = \sup_{\|\varphi\|_{W^{-1}}} |(\varphi, x)|$$

— см. (1.2) — (1.7). Естественно выделить случай, когду «стандартные» пробные функции $\varphi \in \mathcal{D}$ входят в X, их норма $\|\varphi\|_X$ непрерывна относительно сходимости в пространстве $\mathcal{D} = C_0^\infty(T)$ и, более того, само $\mathcal{D} \subseteq X$ илотно в гильбертовом X, так что

$$X = [\mathcal{D}] \tag{2.1}$$

является пространством того же тина W, что и $W = [\mathcal{D}]$ в нашей схеме (1.2) - (1.7). В указанном случае рассматриваемые нами функции u = (x, u) обобщенного переменного $x \in X$ можно отождествить с соответствующими обобщенными функциями

$$u = (\varphi, u), \quad \varphi \in \mathcal{D}.$$

которые в силу непрерывности относительно $\|\phi\|_X$ однозначно определяют $u=(x,\ u)$ на замыкании $[\mathcal{D}]=X;$ в этом смысле

$$W = [\mathcal{D}] \subseteq \mathcal{D}^*$$
.

Например, в схеме (1.2)-(1.7) с оператором $Bu=\bar{u}$, $u\in\mathcal{D}$, когда $W=[\mathcal{D}]=\mathcal{L}_2$, мы имеем

$$X = W^* = BW = \mathcal{L}_2 = [\mathcal{D}]$$

тина W с обобщенными функциями $x=Bu\subseteq X$ ($u\subseteq W$) вида

$$x = (\mathfrak{q}, x) = (\mathfrak{q}, \overline{u}) = \langle \mathfrak{q}, u \rangle_{\mathscr{Q}_2}, \quad \mathfrak{q} \in \mathscr{D}.$$

По поводу того, что $W=\mathcal{L}_2=[\mathcal{D}]$, напомним здесь один известный прием аппроксимации функциями $\phi\in\mathcal{D}$, в котором используются «урезанные» функции $u\in\mathcal{L}_2$ (равные 0 вне какой-либо ограниченной области T_{toc} ,

 $[T_{loc}] \subset T$) и их свертки

$$\varphi = w * u(t) = \int w(t-s) u(s) ds \in \mathcal{D}$$

с дельта-образными функциями $w \ge 0$ из \mathcal{D} ,

$$\int w(t) dt = 1, \quad \int_{|t| > \varepsilon} w(t) dt \to 0$$

при каждом $\varepsilon > 0$ — для них $w * u = u * w \to u$ в \mathscr{L}_2 , что следует, например, из простой оценки

$$\int \left| \int [u(t-s) - u(t)] w(s) ds \right|^{2} dt \le$$

$$\le \int \int |u(t-s) - u(t)|^{2} w(s) ds dt =$$

$$= \int_{|s| \le \varepsilon} \left[\int |u(t-s) - u(t)|^{2} dt \right] w(s) ds + o(1). \quad \Box$$

Обратимся к нашей схеме (1.2)-(1.7) с произвольным $W=[\mathcal{D}]$ и соответствующим $X=W^*$. Допустим, имеется невырожденное вложение

$$W \subseteq W_0 \tag{2.2}$$

в гильбертово пространство $W_0 = [\mathcal{D}]$ с $X_0 = W^*$ типа $W, X_0 = [\mathcal{D}]$ (скажем, это может быть $W_0 = \mathcal{L}_2$) — уточним: условие невырожденности здесь для более слабой нормы $\|u\|_{W_0} \leqslant C \|u\|_W$, $u \in W$, означает, что $\|u\|_{W_0} \neq 0$ при $\|u\|_W \neq 0$).

Tе орема. При невырожденном вложении (2.2) имеются плотные в $X=W^*$ вложения

$$\mathscr{D} \subseteq X_0 = W_0^* \subseteq W^* = X. \tag{2.3}$$

Это дает нам своего рода критерий сравнения для $W = [\mathcal{D}]$ на предмет того, будет ли $X = W^*$ типа W. Понятно, что согласно (2.3), вместе с $\|\phi\|_{X_0}$, $\phi \in \mathcal{D}$, более слабая норма $\|\phi\|_X$ в $X = W^*$ непрерывна относительно сходимости в $\mathcal{D} = C_0^\infty(T)$.

X оказательство. Очевидно, что любой элемент $x \in X_0$ задает на $W \subseteq W_0$ линейный непрерывный функционал x = (u, x), так что $X_0 \subseteq X$; при этом

$$\|x\|_{X} = \sup_{\|u\|_{W} \le 1} |(u, x)| \le C \sup_{\|u\|_{W_{0}} \le 1} |(u, x)| = C \|x\|_{X_{0}}.$$

Более того, X_0 плотно в X — если бы это было не так,

то нашелся бы не равный 0 элемент $u \in W = X^*$, (x, u) = 0, при всех $x \in X_0$, определяющий равный 0 элемент $u \in W_0 = X_0^*$, что противоречит условию $\|u\|_W = 0$ при $\|u\|_{W_0} = 0$.

Далее, в данном нам $X_0 = [\mathcal{D}]$ каждый элемент $x_0 \in X_0$ может быть сколь-угодно точно аппроксимирован пробными $\phi \in \mathcal{D}$, и соответственно относительно белее слабой нормы в $X \supseteq X_0$ мы имеем

$$||x_0 - \varphi||_X \le C ||x_0 - \varphi||_{X_0} \to 0.$$

Установленные в X плотные вложения $\mathcal{D} \subseteq X_0$, $X_0 \subseteq X$. дают $X = [\mathcal{D}]$, причем норма $\|\phi\|_X$, $\varphi \in \mathcal{D}$, непрерывна относительно сходимости в $\mathcal{D} = C_0^\infty(T)$, поскольку этим свойством обладает более сильная норма $\|\phi\|_{X_0} \ge c \|\phi\|_X$.

Добавим, что в (2.3) мы имеем невырожденное еложение $X_0 = W_0^* \subseteq W^* = X$. В самом деле, для $x \in X_0$ с $\|x\|_X = 0$ будем иметь (u, x) = 0, $u \in W$, а поскольку W плотно в W_0 , то (u, x) = 0 при всех $u \in W_0$, т. е. x = 0 как элемент сопряженного пространства $X_0 = W_0^*$, $\|x\|_{X_0} = 0$. \square

В дальпейшем мы укажем различные классы пространств $W = [\mathcal{D}]$, $X = W^*$ типа W, и каждое $W_0 = W$, X (все равно, идет ли речь о самом $W = [\mathcal{D}]$ или о дзойственном ему $X = [\mathcal{D}]$) может служить эталоном для любого другого интересующего нас пространства $W = [\mathcal{D}]$ в критерии сравнения (2.2) на предмет проверки того, будет ли соответствующее пространство пробных функций $X = W^*$ типа W = CM, (2.3).

2° Пробные пространства, связанные с операторами в \mathfrak{L}_2 . Рассмотрим случай, когда форма (1.2) связана с оператором $B\colon \mathcal{D} \to \mathscr{L}_2 \subseteq \mathcal{D}^*$ в пространстве \mathscr{L}_2 , иначе говоря, когда в нашей схеме (1.2)—(1.7) мы имеем $B_{\mathfrak{P}} \subseteq \mathscr{L}_2$ при $\mathfrak{P} \subseteq \mathscr{D}$. Этот случай удобнее описать с помощью оператора $\mathscr{P} = \overline{B}$, а именно

$$\langle u, v \rangle_W = \langle u, \mathcal{P}v \rangle_{\mathcal{L}_2}, \quad u, v \in \mathcal{D},$$
 (2.4)

где $\mathscr{P}-$ линейный симметрический положительный сператор на $\mathscr{D}=C_0^\infty(T)$ в пространстве $\mathscr{L}_2=\mathscr{L}_2(T)$,

$$\langle u, \mathscr{P}v \rangle_{\mathscr{Q}_2} = \langle \mathscr{P}u, v \rangle_{\mathscr{Q}_2}, \quad \langle u, \mathscr{P}u \rangle_{\mathscr{Q}_2} \geqslant 0$$

для всех $u, v \in \mathcal{D}$.

Допустим, что этот оператор $\mathcal{P} \geqslant 0$ удовлетворяет условию полуограниченности

$$\langle \varphi, \mathscr{P} \varphi \rangle_{\mathscr{L}_2} \geqslant c \|\varphi\|_{\mathscr{L}_2}^2, \quad \varphi \in \mathscr{D},$$
 (2.5)

при некотором c > 0.

Это условие на норму $\|\phi\|_W = \langle \phi, \mathcal{P}\phi \rangle_{\mathcal{L}_2}^{1/2}$ в W дает очевидное вложение $W = [\mathcal{D}] \subseteq \mathcal{L}_2$. Покажем, что оно является невырожденным, т. е. для $u \in W$ с нормой $\|u\|_{\mathcal{L}_2} = 0$ мы имеем $\|u\|_W = 0$. Действительно, взяв обобменную функцию $x = Bu \in X$ с $\|u\|_{\mathcal{L}_2} = 0$, получим

$$(\varphi, Bu) = \langle \varphi, \mathcal{P}u \rangle_{\mathcal{Z}_{\mathfrak{p}}} = \langle \mathcal{P}\varphi, u \rangle_{\mathcal{Z}_{\mathfrak{p}}} = 0, \quad \varphi \in \mathcal{D},$$

откуда видно, что обобщенная функция x = Bu = 0 в $X \subseteq \mathcal{L}^*$ и $\|Bu\|_X = \|u\|_W = 0$. Применяя критерий сравнения (2.2) с $W_0 = \mathcal{L}_2$, гарантирующий вложения (2.3), приходим к следующему предложению.

Теорема. При условии полуограниченности (2.5) пространство пробных функций $X = BW = \overline{\mathcal{P}W}$ содержит плотное в нем $\mathcal{L}_2 = \mathcal{L}_2(T)$ и является пространством типа W. \square

В связи с условием (2.5) отметим следующее.

Отправляясь от симметрического положительного оператора \mathscr{P} в $\mathscr{L}_2 = \mathscr{L}_2(T)$ с областью определения $\mathscr{D} = \mathscr{C}_0^\infty(T)$ и связывая его с соответствующей формой (2.4), в схеме (1.2) - (1.7) мы фактически получаем его продолжение \mathscr{P} : $\mathscr{P}u = \overline{Bu}$, $u \in W = [\mathscr{D}]$, как оператора

$$\mathcal{P}$$
: $W \to \overline{X} = \overline{\mathcal{P}W}$,

кот грое определяет, в частности, расширение оператора $\mathscr P$ в пространстве $\mathscr L_2$ на область

$$\mathcal{D}_{\mathcal{P}} = \{u \in W \colon \mathcal{P}u \in \mathcal{L}_2\}.$$

Оне совпадает с известным расширением по Фридрихсу иследного симметрического $\mathscr{P} \ge 0$ до самосопряжения голо оператора в \mathscr{L}_2 .

Поясиим: по самому определению область значений $\mathscr{P}u, u \in \mathscr{D}_{\mathscr{P}}$, есть пересечение $\mathscr{L}_2 \cap \overline{BW}$, а, как мы знаем, $X = \mathscr{L}_2$, так что совокупность $\overline{X} = \overline{BW} = \mathscr{P}W$ комплексносопряженных функций $\mathscr{P}u = \overline{Bu}$ с $u \in W$ содержит $\overline{\mathscr{L}}_2 = \mathscr{L}_2$, $\mathscr{L}_2 \cap \mathscr{P}W = \mathscr{L}_2$. Оператор

$$\mathcal{P}: \mathcal{D}_{\mathcal{P}} \to \mathcal{L}_{2} = \mathcal{P}\mathcal{D}_{\mathcal{P}}$$

является симметрическим, что диктуется равенством

$$\langle u, \mathscr{P}v \rangle_{\mathscr{Q}_2} = \langle u, v \rangle_{W}, \quad u, v \in \mathscr{D}_{\mathscr{P}}.$$

Кроме того, он удовлетворяет условию

$$\|\mathscr{P}u\|_{\mathscr{L}_{2}} \geqslant c \|u\|_{\mathscr{L}_{2}}, \quad u \in \mathscr{D}_{\mathscr{P}},$$

что следует из условия полуограниченности (2.5) при переходе к пределу $\phi \to u \in \mathscr{D}_\mathscr{S}$ в пространстве $W \subseteq \mathscr{L}_2$:

$$\begin{split} \parallel u \parallel_{\mathcal{L}_2} \parallel \mathcal{P} u \parallel_{\mathcal{L}_2} \geqslant \langle u, \mathcal{P} u \rangle_{\mathcal{L}_2} &= \parallel u \parallel_W^2 = \\ &= \lim \parallel \mathfrak{q} \parallel_W^2 = \lim \langle \mathfrak{q}, \mathcal{P} \mathfrak{q} \rangle_{\mathcal{L}_2} \geqslant \lim c \parallel \mathfrak{q} \parallel_{\mathcal{L}_2}^2 = c \parallel u \parallel_{\mathcal{L}_2}^2. \end{split}$$

В итоге мы имеем симметрический оператор \mathscr{P} с определенным на всем пространстве \mathscr{L}_2 симметрическим ограниченным обратным оператором $Q=\mathscr{P}^{-1}, \ \|Q\|\leqslant 1/c,$ и вместе с Q оператор $\mathscr{P}=Q^{-1}$ является самосопряженным. \square

По поводу (2.5) отметим еще, что как условие, гарантирующее включение $\mathscr{D} = C_0^\infty(T)$ в пространство пробных функций $X = BW = \overline{\mathscr{P}W}$ и приводящее к $X = [\mathscr{D}]$ типа W, оно в случае

$$\mathcal{P}\mathcal{D} \subseteq \mathcal{D}$$

может быть заменено более слабым условием-

$$\langle \varphi, \mathscr{P} \varphi \rangle_{\mathscr{L}_{2}}^{1/2} \geqslant c \int_{T_{\text{loc}}} |\varphi| dt, \quad \varphi \in \mathscr{D},$$
 (2.6)

в каждой ограниченной области $T_{\text{loc}} \subseteq T$,

Действительно, для всех функций x=x(t) из \mathscr{D} согласно (2.6) мы имем непрерывность (φ, x) относительно $\varphi \in \mathscr{D}$ но норме $\|\varphi\|_W = \langle \varphi, \mathscr{P} \varphi \rangle_{\mathscr{L}_2}^{1/2}$, поскольку

$$|(\varphi, x)| \leqslant \max |x(t)| \cdot \int_{T_{\text{loc}}} |\varphi| dt \leqslant C \max |x(t)| \cdot ||\varphi||_{W}$$

в области $T_{\text{loc}} \supseteq \text{supp } x$, содержащей носитель supp x, а такая непрерывность, как мы знаем, и определяет принадлежность обобщенных $x \in \mathcal{D}^*$ к пространству пробных функций X.

Таким образом,

$$X \cong \mathcal{D}$$
.

и, более того, поскольку по самому определению $X==[B\mathcal{D}]=[\overline{\mathcal{P}}\overline{\mathcal{D}}]$ содержит плотное в нем $\overline{\mathcal{P}}\overline{\mathcal{D}}\subseteq\overline{\mathcal{D}}=\mathcal{D},$ при включении $\mathcal{D}\subseteq X$ мы имеем $X=[\mathcal{D}]$.

При условии (2.6) норма $x \in \mathcal{D}$ как элементов в X непрерывна относительно сходимости в пространстве \mathcal{D} ,

$$||x||_X = \sup_{\|\varphi^v_{W} \le 1} |(\varphi, x)| \leqslant C \max |x(t)|,$$

и в итоге получается следующий результат.

T е орема. B случае $\mathcal{PD} \subseteq \mathcal{D}$ при условии (2.6) пространство пробных функций $X = BW = \overline{\mathcal{P}W}$ содержит плотное в нем $\mathcal{D} = C_0^{\infty}(T)$ и является пространством типа W.

Отметим, что мы имеем $\mathscr{PD} \subseteq \mathscr{D}$, например, в случае дифференциального оператора $\mathscr{P} = \sum a_k \partial^k$ с бескопечно-пифференцируемыми коэффициентами.

3° Пробные пространства для дифференциальных операторов. Важное место в дальнейшем занимают пространства пробных функций для симметрических дифференциальных операторов

$$\mathcal{P} = \sum a_k \partial^k \geqslant 0$$

с действительными бесконечно дифференцируемыми коэффициентами, для которых в схеме (1.2)—(1.7) с формой (2.4) мы имеем

$$B\varphi = \overline{\mathscr{P}\varphi} = \mathscr{P}\overline{\varphi}, \quad \varphi \in \mathscr{D}.$$

Здесь мы специально останавливаемся на комплексном случае, чтобы подчеркнуть инвариантность соответствующего пространства $X = \widehat{\mathcal{F}W} \subseteq \mathcal{D}^*$ относительно перехода $x \to \overline{x}$ к комплексно-сопряженным $x \in \mathcal{D}^*$. Именно, в указанном случае

$$\| \mathbf{q} \, \|_W^2 = \langle \mathbf{q}, \mathscr{P} \mathbf{q} \rangle_{\mathscr{Q}_2} = \langle \overline{\mathbf{q}}, \mathscr{P} \overline{\mathbf{q}} \rangle_{\mathscr{Q}_2} = \| \overline{\mathbf{q}} \, \|_{W}, \quad \mathbf{q} \in \mathscr{D},$$

и эта пивариантность нормы в W относительно перехода $\phi \to \phi$ показывает, что вместе с $x \in X$ комплексно-сопряженная обобщенная функция $x = (\overline{\phi}, x)$ является непрерывной по морме

$$\|\varphi\|_{w} = \|\overline{\varphi}\|_{w}, \quad \varphi \in \mathcal{D},$$

а следовательно, $\bar{x} \in X$.

Понятно, что вместе с комплексно-сопряженным $\overline{\mathcal{D}}=\mathcal{D}$ мы имеем

$$\overline{X} = \mathcal{P}W = X \tag{2.7}$$

с нормой

$$\|\overline{x}\|_{X} = \sup_{\|\phi\|_{W} \leq 1} |(q, \overline{x})| = \sup_{\|\overline{\phi}\|_{W} \leq 1} |(\overline{q}, x)| = \|x\|_{X}, \quad x \in X.$$

Для дифференциального оператора $\mathscr{P} = \sum a_h \partial^h$ его действие на обобщенные функции $u = (\varphi, u)$. $\varphi \in \mathscr{D}$, определяется формулой

$$\mathcal{P}u = (\varphi, \mathcal{P}u) = (\mathcal{P}^*\varphi, u), \quad \varphi \in \mathcal{D}.$$

где

$$\mathscr{P}^*\mathfrak{q} = \sum_k (-1)^{|k|} \partial^k (a_k \mathfrak{q}).$$

Отметим, что оператор \mathscr{P} в (2.7), являющийся расипрением исходного заданного на $\mathscr{D}=C_0^\infty(T)$ симметрического дифференциального оператора

$$\mathscr{P} = \mathscr{P}^*$$

действует на функции $u \in W = [\mathcal{D}]$ так же, как диффереициальный оператор; точнее,

$$(\varphi, \mathcal{P}u) = (\mathcal{P}^*\varphi, u), \quad \varphi \in \mathcal{D}.$$

Действительно, согласно общему определению $\mathscr{P}=\overline{B},$ мы имеем

$$(\mathfrak{q}, \mathscr{P}u) = (\mathfrak{q}, \overline{Bu}) = \overline{(\overline{\mathfrak{q}}, Bu)} = (\overline{Bq}, u) = \overline{(\overline{\mathscr{P}q}, u)} = (\overline{\mathscr{P}q}, u)$$

$$c \mathcal{P}_{\Psi} = \overline{\mathcal{P}_{\Psi}}. \mathcal{P}_{\Psi} = \mathcal{P}_{\Psi}. \square$$

Рассматривая вопрос о том, когда X является пространством типа W, т. е. $X = [\mathcal{D}]$ является замыканием пространства $\mathcal{D} = C_0^\infty(T)$, сразу можно было бы сказать, что указанное свойство $X = [\mathcal{D}]$ равносильно иевырожденности оператора \mathcal{P} в следующей форме: сходимость $\|\phi\|_W = (\varphi, \mathcal{P}\phi)^{1/2} \to 0$ влечет слабую сходимость $\phi \to 0$ функций $\phi \in \mathcal{D}$ в \mathcal{D}' , а именно,

$$(x, \varphi) \equiv (\varphi, x) \rightarrow 0$$

при каждом $x \in \mathcal{D} = C_0^{\infty}(T)$.

Напомним, что в случае полуограниченного оператора \mathscr{P} , удовлетворяющего условию (2.5) или — когда $\mathscr{P}\mathscr{D} \subseteq \mathscr{D}$ — условию (2.6), пространство пробных функций

 $X=[\mathcal{D}]$ включает илотное в нем $\mathcal{D}=\mathcal{C}_0^\infty(T)$, и функции $u=(x,\ u),\ x\in X,$ из $W=[\mathcal{D}]$ можно отождествить с обобщенными функциями

$$u = (x, u), \quad x \in \mathcal{D}, \ \mathbf{B} \ \mathcal{D}^*.$$

Примером дифференциального оператора \mathscr{P} с условием полуограниченности (2.5)— и тем более условием (2.6)— может служить оператор

$$\mathscr{P} = \sum_{|h| \le p} (-1)^{|h|} \partial^{2h}. \tag{2.8}$$

задающий форму (2.4) вида

$$\langle u, v \rangle_W = \langle u, \mathcal{P}v \rangle_{\mathcal{L}_2} = \sum_{|h| \leq p} \langle \partial^h u, \partial^h v \rangle_{\mathcal{L}_2}, \quad u, v \in \mathcal{D}.$$

Ей отвечают известные соболевские пространства

$$W = \mathring{W}_{2}^{p}(T), \quad X = \mathcal{P}W = W^{*} = \mathring{W}_{2}^{-p}(T)$$

с нормами, обозначаемыми в дальнейшем как

$$||u||_{W} = ||u||_{p}, \quad ||x||_{X} = ||x||_{-p}.$$

Отметим, что

$$||u||_p^2 = \sum_{|h| \le p} ||\partial^h u||_{\mathscr{L}_2}^2.$$

причем это справедливо не только для $u \in \mathcal{D} - C_0^{\infty}(T)$, но и для всех $u \in \mathring{W}_2^p(T)$ — нужно только понимать $\partial^k u$ как обобщенную производную

$$(\varphi, \partial^k u) = (-1)^{|k|} (\partial^k \varphi, u), \quad \varphi \in \mathcal{D}.$$

В частности, согласно указанной формуле для $\|u\|_p^2$, здесь утверждается, что

 ∂ ля всех $u \in \mathring{W}_{2}^{p}(T)$ обобщенные производные $\partial^{k}u$ поря $\partial \kappa_{a} \mid k \mid \leqslant p$ принадлежат пространству $\mathscr{L}_{2} = \mathscr{L}_{2}(T)$.

В самом деле, каждая функция $u \in \mathring{W}_2^p$ есть предел $u = \lim u_n$ функций $u_n \in \mathcal{D}$ в $\mathring{W}_2^p - [\mathcal{D}]$, для них в \mathcal{L}_2 существует предел $\lim \partial^k u_n = f_k$, при всех $\varphi \in \mathcal{D}$

$$(\varphi, \partial^h u) = (-1)^{|h|} (\partial^h \varphi, u) = \lim_{n \to \infty} (-1)^{|h|} (\partial^h \varphi, u_n) = \lim_{n \to \infty} (\varphi, \partial^h u_n) = (\varphi, i_h),$$

и здесь уже непосредственно видно, что $\partial^k u = f_k \in \mathcal{L}_2$,

причем

$$\|u\|_p^2 = \lim \|u_n\|_p^2 = \lim \sum_{|h| \le p} \|\partial^h u_n\|_{\mathcal{L}_2}^2 = \sum_{|h| \le p} \|f_h\|_{\mathcal{L}_2}^2.$$

Аналогичный пример дает дифференциальный оператор

$$\mathcal{P} = \sum_{j=1}^{n} \sum_{|h_j| \le p_j} (-1)^{|h_j|} \partial^{2h_j}. \tag{2.8}$$

задающий форму (2.4) вида

$$\langle u, v \rangle_W = \langle u, \mathcal{P}u \rangle = \sum_{j=1}^n \sum_{|h_j| \leq p_j} \langle \partial^{k_j} u, \partial^{k_j} v \rangle_{\mathcal{L}_2}, \quad u, v \in \mathcal{D},$$

где мультииндексы k_j указывают производные по j-й группе переменных, скажем, формально объединенных в многомерное $t_j \in R^{d_j}$ и в совокупности $\sum d_j = d$ представляющих $t = (t_1, \ldots, t_d) \in R^d$. Соответствующие

$$W = \mathring{W}_{2}^{p}(T), \quad X = \mathscr{P}W = W^{*} = \mathring{W}_{2}^{-p}(T)$$

с мультипндексом $p=(p_1,\ldots,p_n)$ будем также называть соболевскими пространствами, пспользуя те же обозначения $\|u\|_W=\|u\|_p,\ \|x\|_X=\|x\|_{-p}.$ Понятно, что для всех $u\in \mathring{W}_2^p(T)$ обобщенные производные $\partial^{k_j}u,\ |k_j|\leqslant p_j$, принадлежат пространству $\mathscr{L}_2=\mathscr{L}_2(T)$ и

$$||u||_p^2 = \sum_{j=1}^n \sum_{|h_j| < p_j} ||\partial^{h_j} u||_{\mathscr{Z}_2}^2, \quad u \in \mathring{W}_2^p.$$

Отметим, что при любых $p' \leqslant p'' \left(p_j' \leqslant p_j'', j = 1, \ldots, n\right)$ имеют место вложения

$$\mathring{W}_{2}^{p''} \subseteq \mathring{W}_{2}^{p'} \subseteq \mathscr{L}_{2} \subseteq \mathring{W}_{2}^{-p'} \subseteq \mathring{W}_{2}^{-p''}$$

того же типа, что и в (2.2), (2.3). □

В случае дифференциального оператора

$$\mathcal{P} = \mathcal{P}(\hat{\sigma}) = \sum_{k} a_k \sigma^k \tag{2.9}$$

с постоянными коэффициентами его свойства определяются соответствующим полиномом

$$\mathscr{P} = \mathscr{P}(i\lambda) = \sum_{k} a_{k}(i\lambda)^{k}, \quad \lambda \in \mathbb{R}^{d}.$$
 (2.9)'

Это связано с представлением

$$\langle u, v \rangle_W = \langle u, \mathscr{P}v \rangle_{\mathscr{L}_2} = \int \widetilde{u}(\lambda) \, \overline{\widetilde{v}(\lambda)} \, \mathscr{F}(i\lambda) \, d\lambda.$$

где \widetilde{u} , \widetilde{v} — преобразование Фурье функций u, $v \in C_0^\infty(T)$. Из него непосредственно видно, например, что при

$$\mathscr{P}(i\lambda) \geqslant c > 0, \quad \lambda \subseteq \mathbb{R}^d,$$

для оператора \mathscr{P} будет выполнено условие полуограниченности (2.5) и тем более условие (2.6)— поясним:

$$\|\varphi\|_{W}^{2} = \int |\widetilde{\varphi}(\lambda)|^{2} \mathscr{P}(i\lambda) d\lambda \geqslant c \int |\widetilde{\varphi}(\lambda)|^{2} d\lambda = c \|\varphi\|_{\mathscr{L}_{\sigma}}^{2}.$$

4° Преобразование Фурье пробных обобщенных функций. Напомним коротко о некоторых свойствах преобразо-еания Фурье

$$\widetilde{\varphi}(\lambda) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{-i\lambda t} \varphi(t) dt, \quad \lambda \in \mathbb{R}^d.$$
 (2.10)

Для интегрируемой $\varphi = \varphi(t)$, $t \in \mathbb{R}^d$, оно определяет непрерывную функцию переменного λ , $\widetilde{\varphi}(\lambda) \to 0$ при $\lambda \to \infty$, и в случае интегрируемости $\widetilde{\varphi}(\lambda)$, $\lambda \in \mathbb{R}^d$, справедлива формула

$$\varphi(t) = \frac{1}{(2\pi)^{d/2}} \int e^{i\lambda t} \widetilde{\varphi}(\lambda) d\lambda, \quad t \in \mathbb{R}^d,$$

определяющая соответствующее обратное преобразование Φ урье $\widetilde{f} = \varphi$ для $f = \widetilde{\varphi}$. При интегрируемости $|t|^p \varphi(t)$ правую часть в (2.10) можно p раз дифференцировать по переменным $(\lambda_1, \ldots, \lambda_d) = \lambda$ под знаком интеграла, и операция дифференцирования $\partial^k \widetilde{\varphi}$, $|k| \leq p$, непосредственно дает

$$\partial^k \widetilde{\varphi} = (-it)^k \varphi.$$

С другой стороны, если функция φ имеет интегрируемые производные $\partial^k \varphi$, $|k| \leq p$, то интегрированием по частям в (2.10) получается

$$\widetilde{\partial^k \varphi} = (i\lambda)^k \widehat{\varphi}.$$

Для $ceeptku \phi = u * v$ интегрируемых функций

$$\varphi(t) = \int u(t-s)v(s) ds$$

повторное интегрирование в (2.10) дает

$$\widetilde{u * v} = (2\pi)^{d/2} \widetilde{u} \widetilde{v}.$$

Аналогично в случае интегрируемости \tilde{u} , \tilde{v} о 5 р а т н о е преобразование Фурье свертки $\tilde{u}*\tilde{v}$ дает произведение $(2\pi)^{a/2}~uv$, и при интегрируемости uv получается, что

$$(2\pi)^{d/2}\widetilde{uv} = \widetilde{u} * \widetilde{v},$$

$$\int e^{-i\lambda t} u(t) v(t) dt = \int \widetilde{u}(\mu) \widetilde{v}(\lambda - \mu) d\mu.$$

Взяв вместо v комплексно-сопряженную функцию \bar{v} , при $\lambda=0$ здесь получим известное равенство Парсеваля

$$\int u(t)\,\overline{v(t)}\,dt = \int \widetilde{u}(\mu)\,\overline{\widetilde{v}(\mu)}\,d\mu.$$

Обратимся к пространству $\mathcal J$ бесконечно дифференцируемых функций ϕ , таких что все их производные $\partial^k \phi(t)$ убывают на «бесконечности» быстрее любой степени $|t|^{-p}$:

$$|t|^p \partial^k \oplus \to 0 \quad \text{при } t \to \infty.$$
 (2.11)

Сходимость $\varphi_n \to \varphi$ в $\mathcal S$ определяется как равномерная сходимость

$$|t|^p \partial^k \varphi_n \rightarrow |t|^p \partial^k \varphi$$

для всех производных $\partial^h \varphi$ и степеней $|t|^p$. Очевидно вложение

$$\mathscr{D} = C_0^{\infty}(R^d) \subseteq \mathscr{I}$$

со сходимостью $\phi_n \to \phi$ в \mathcal{D} , более сильной, чем в \mathcal{J} . Преобразование Фурье функций $\phi \in \mathcal{J}$ дает $\phi \in \mathcal{J}$ из такой же совокупности функций (двойственного переменного $\lambda \in R^d$), и то же самое можно сказать об обратном преобразовании, так что мы имеем взаимно однозначное соответствие

$$\mathcal{J} \ni \varphi \leftrightarrow \widetilde{\varphi} \in \mathcal{J}.$$

Легко видеть, что это соответствие взаимно непрерывно, т. е. при $\phi_n \to \varphi$ в $\mathcal F$ мы имеем $\widetilde{\phi}_n \to \widetilde{\varphi}$ в $\mathcal F$ и наоборот — это следует, папример, из общей для всех $\varphi \in \mathcal F$ оценки

$$\left| (i\lambda)^h \, \partial^l \widetilde{\varphi} \right| \leq \int_{\mathbb{R}^d} (1 + |t|^2)^{-r} \, dt \cdot \sup_t \left(1 + |t|^2 \right)^r \left| \phi^h \left| (-it)^l \, \varphi \right| \right|$$

c r > d/2.

Взяв $w \in C_0^{\infty}(\mathbb{R}^d)$ с w(t) = 1 при $|t| \le 1$ и положив $\varphi_n(t) = w(t/n)\varphi(t)$, для любой функции $\varphi \in \mathcal{J}$ получим $\varphi_n \in \mathscr{D} = C_0^{\infty}(R^d)$, для которых

$$\varphi_n \to \varphi, \quad \stackrel{\sim}{\varphi_n} \to \varphi$$

в Э. Каждая обобщенная функция

$$x = (\varphi, x), \varphi \in \mathcal{D},$$

непрерывная относительно сходимости в \mathcal{J} , по непрерывности однозначно продолжается на все $\phi \in \mathcal{J}$, и это определяет обобщенную функцию $x \in \mathcal{G}^*$; понятно, $\mathfrak{I}_{TO} \mathscr{I}^* \subseteq \mathscr{D}^*$.

Для любой обобщенной функции $x \in \mathcal{I}^*$ равенство

$$(\varphi, \ \widetilde{x}) = (\widetilde{\varphi}, \ x) \tag{2.12}$$

с помощью $(\overset{\sim}{\varphi}, x)$ на $\overset{\sim}{\varphi} \in \mathcal{J}$ задает обобщенную функцию $\tilde{x} \in \mathcal{J}^*$ на $\varphi \in \mathcal{J}$ — обобщенное преобразование Фурье ϕ ункции $x \in \mathcal{I}^*$.

Например, равенство

$$\frac{1}{(2\pi)^{d/2}}\int e^{-i\lambda t}\varphi(\lambda)\,d\lambda=\widetilde{\varphi}(t)=(\widetilde{\varphi},\,\delta_t)=(\varphi,\,\widetilde{\delta}_t),\quad \, \varphi\in\mathcal{I},$$

$$(2\pi)^{d/2} \int_{-\infty}^{\infty} \varphi(t) = \varphi(t) = (\varphi, \delta t) = (\varphi, \delta t), \quad \varphi = \mathcal{I},$$

непосредственно определяет функцию $\tilde{x} = \tilde{\delta}_t(\lambda) = e^{-i\lambda t}$. $\lambda \in R^{\hat{a}}$, как обобщенное преобразование Фурье $\partial e_{\Lambda b T} a_{m{-}}$ функции $x = \delta_t(s)$, $s \in \mathbb{R}^d$, в точке $t \in \mathbb{R}^d$.

Внешне равенство (2.12) схоже с равенством Парсеваля, которое фактически и составляет суть формулы (2.12) для $u = \varphi$ и $x = \overline{v}$. С учетом того, что пространство $\mathscr{I} \supseteq C_0^{\infty}(R^d)$ плотно в $\mathscr{L}_2 = \mathscr{L}_2(R^d)$, справедливое для $u, v \in \mathcal{J}$ равенство Парсеваля распространяется на все $u, v \in \mathcal{L}_2$, устанавливая унитарность преобразования Фурье $\phi \to \phi$ в \mathcal{L}_2 .

Для обобщенного преобразования Фурье сохраняют свою силу формулы дифференцирования и умножения на полином.

В связи с умножением выделим функции w, являющиеся мультипликаторами в \mathcal{I} , для которых $w\mathcal{I} \subseteq \mathcal{I}$ и операция умножения $\phi \to w \phi$ непрерывна по $\phi \in \mathcal{J}$ относительно сходимости в пространстве Э. Такими мультипликаторами являются бесконечно дифференцируемые функции, которые сами и все их производные растут на бесконечности не быстрее, чем степенным образом,— скажем, для w=w(t), $t\in R^d$, должно быть

$$|\hat{\partial}^k u(t)| \leqslant C_k |t|^{p_k}, \quad t \in \mathbb{R}^d.$$

В соответствии с этим w является также мультипликатором в \mathcal{I}^* для каждого $x \in \mathcal{I}^*$, определяя $wx \in \mathcal{I}^*$ как

$$(\varphi, wx) \equiv (w\varphi, x), \quad \varphi \in \mathcal{I}.$$

На обобщенное преобразование Фурье переносится формула для умножения-свертки

$$(2\pi)^{d/2}\widetilde{wx} = \tilde{w} * \tilde{x}.$$

Понятно, что все сказанное относится и к обобщенному обратному преобразованию Фурье. □

Сделаем несколько дополнительных замечаний, свя-

занных с операцией свертки.

Используя свертку f*g обобщенной функции $f \in \mathcal{D}*$ и пробной функции $g \in \mathcal{D} = C_0^\infty(R^d)$, которая определяется при каждом $t \in R^d$ как результат применения f к пробной g(t-s), $s \in R^d$, мы имеем дело с бесконечно дифференцируемой функцией f*g $(f*g \in C^\infty)$ с производными

$$\partial^{h}(f * g) = f * \partial^{h}g$$

— поясним: операция дифференцирования $\partial^k g_t$ непрерыв-

на в пространстве Д.

Для $f \in \mathcal{D}^*$ с компактным носителем свертка f * g определена для любой обобщенной функции $g \in \mathcal{D}^*$, а именно действие $f * g \in \mathcal{D}^*$ на пробные $\phi(s)$, $s \in R^t$, определяется как результат последовательного применения f к сдвинутой на t пробной $\phi_t = \phi(s+t)$, а затем применения g к пробной функции (ϕ_t, f) , $t \in R^d$; при этом

$$f * g = g * f,$$

где справа $f \in \mathcal{D}^*$ с компактным носителем действует соответственно на функцию $(\varphi_t, g) \in C^*$ (локализованную в окрестности носителя $\sup f$).

Свертку f*g можно рассматривать как тензорное произведение $f\otimes g$ на $\phi(s+t)$, $s,\ t\in R^d$, что непосредственно указывает на включение

$$\operatorname{supp}(f * g) \subseteq \operatorname{supp} f + \operatorname{supp} g$$

в арифметическую сумму посителей ј и д. Аналогичное

включение справедливо и для сингулярных носителей

$$\operatorname{sing} \operatorname{supp}(f * g) \subseteq \operatorname{sing} \operatorname{supp} f + \operatorname{sing} \operatorname{supp} g$$

(напомним, что sing supp обобщенной функции есть дополнение к открытому множеству, для каждой точки которого имеется окрестность, где она является бесконечно дифференцируемой). Указанное соотношение для $f, g \in$ из их представления $f = f_1 + f_2$, $g = g_1 + g_2$ с f_1 , $g_1 \in \mathcal{D}$ и f_2 , $g_2 \in \mathcal{D}^*$ с носителями из ε-окрестностей сингулярных носителей f и g:

$$sing supp (f_1 * g_1 + f_1 * g_2 + f_2 * g_1 + f_2 * g_2) =$$

$$supp f_2 * g_2 = supp f_2 + supp g_2,$$

а к общему случаю можно прийти локализацией і - $\rightarrow w(t/n)t$, $g \rightarrow w(t/n)g$ c $w \in \mathcal{D}$ (w = 1 B окрестности 0)при $n \to \infty$.

Благодаря непрерывности операции дифференцирования в \mathscr{D} ,

$$\partial^h(f * g) = (\partial^h f * g) = (f * \partial^h g).$$

Имея ϕy н ∂a ментальное решение $E \in \mathscr{D}^*$ уравнения $LE=\delta$ для операторов L с постоянными коэффициентами, являющееся функцией C^{∞} всюду, кроме точки 0 (сингулярного носителя дельта-функции δ), для любого $u \in$ $\in \mathscr{D}^*$ с компактным носителем можно использовать представление

$$u = \delta * u = LE * u = L(E * u) = L(u * E) = Lu * E,$$

которое дает включение

 $\operatorname{sing supp} u \subseteq \operatorname{sing supp} Lu$,

указывающее на бесконечную дифференцируемость решения $u \in \mathcal{D}^*$ уравнения

$$Lu = j$$

в той же области, где этим свойством обладает правая часть f. Указанное свойство, характерное для эллиптических оцераторов, называют гипоэллиптичностью. Отметим, что фундаментальное решение $E \subseteq \mathcal{D}^*$ в R' может быть описано преобразованием Фурье

$$\widetilde{E} = \frac{1}{(2\pi)^{d/2}} \frac{1}{L(i\lambda)}, \quad \lambda \in \mathbb{R}^d,$$

непосредственно получающимся из уравнения

$$LE = \delta$$
. \square

Покажем, например, как, используя преобразования Фурье (точнее, соответствующие ряды Фурье), можно выявить некоторые нужные нам в дальнейшем свойства пространств $\mathcal{D} = C_0^{\infty}(T)$ и $\mathring{W}_2^p(T), p = 0, 1, \ldots$

Каждая функция $\varphi \in \mathcal{D} = C_0^{\infty}(T)$ в области $T \subseteq R^d$. имея компактный носитель в одном из кубов $(-n\pi, n\pi)^d$, $n=1, 2, \ldots$, представима в нем рядом Фурье

$$\varphi(t) = \frac{1}{(2\pi)^{d/2}} \sum_{k} \widetilde{\varphi}\left(\frac{k}{n}\right) e^{i\frac{k}{n}t}$$

с коэффициентами

$$\widetilde{\varphi}\left(\frac{k}{n}\right) = \frac{1}{(2\pi)^{d/2}} \int e^{-i\frac{k}{n}t} \varphi(t) dt \to 0$$

при $|k| \to \infty$ быстрее любой (отрицательной) степени |k|, так что все производные $\partial^m \varphi$ представимы соответствующим равномерно сходящимся рядом

$$\partial^{m} \varphi(t) = \frac{1}{(2\pi)^{d/2}} \sum_{k} \left(i \frac{k}{n} \right)^{m} \widetilde{\varphi}\left(\frac{k}{n} \right) e^{i\frac{h}{n}t}.$$

Понятно, что функция ф с носителем в ограниченной области $T_{\text{loc}} \subseteq T$ может быть аппроксимирована в пространстве $\mathscr{D} = C_0^{\infty}(T)$ частичными суммами φ_N (по $|k| \leq N$) указанного ряда Фурье, локализованными надлежащим множителем $w \in C_0^\infty(T), w = 1$, в области $T_1 =$ \cong supp φ , а именно, при $N \to \infty$ для всех производных

$$\left| \partial^{m} \varphi - \partial^{m} (w \varphi_{N}) \right| = \left| \partial^{m} w (\varphi - \varphi_{N}) \right| \leqslant C \sum_{l \leqslant m} \left| \partial^{l} \varphi - \partial^{l} \varphi_{N} \right| \to 0$$

равномерно. Очевидно, что функции вида $we^{i\frac{h}{n}t}$ с различными w, отвечающими счетному числу областей $T_{\rm loc}$ (объединение которых составляет T), образуют с чет ную полную систему в пространстве $\mathscr{D} = C_0^{\infty}(T)$ — полную в том смысле, что ее линейная оболочка плотна в Д, т. е. для любой $\phi \in \mathcal{D}$ найдется последовательность линейных комбинаций функций вида $we^{i\frac{k}{n}t}$, сходящаяся к ф в про-

странстве $\mathscr{D} = C_0^{\infty}(T)$; при этом, скажем, здесь можно

ú

взять линейные комбинации с рациональными коэффициентами, и это показывает, что пространство $\mathcal{D}=C_0^\infty(T)$ является сепарабельным. Понятно, что вместе с ням будут сепарабельными все соболевские пространства $\mathring{W}_2^p(T)=\left[C_0^\infty(T)\right]$ и сопряженные к ним $\mathring{W}_2^{-p}(T)$ $(p=0,1,\ldots)$.

Добавим, что согласно известному «разложению единицы», в пространстве $\mathcal{D} = C_0^\infty(T)$ в качестве полной системы можно взять $\left\{ we^{i\frac{h}{n}t} \right\}$ с надлежащими $w=w_1\dots w_d$, локализованными в достаточно малых окрестностях (взятых в счетном числе) и дающих

$$we^{i\frac{k}{n}t} = \prod_{j=1}^{d} w_j(t_j) e^{i\frac{k_j}{n}t_j}$$

как произведение пробных функций от каждого переменного t_j в $t=(t_1,\ldots,t_d)$; это указывает, в частности, на полноту соответствующих тензорных произведений типа

$$\varphi = \prod_{i=1}^{d} \otimes \varphi_{i} \Longrightarrow \prod_{j=1}^{d} \varphi_{j}(t_{j}). \quad \Box$$

Тензорное произведение обобщенных функций $f, g \in \mathcal{D}^*$ в области $T \subseteq R^d$ определено в прямом произведении $T \times T$ как обобщенная функция $f \otimes g$, действие которой на пробные функции $\varphi(s, t), (s, t) \in T \times T$, есть результат последовательного действия f на $\varphi(\cdot, t)$ при фиксированном t п g на пробные $(\varphi(\cdot, t), f) \in \mathcal{D} = C_0^\infty(T)$.

Обобщенная функция $f \otimes g$ однозначно определяется на всем $C_0^\infty (T \times T)$ при ее задании на пробных функциях

$$\varphi(s, t) = \varphi_1(s)\varphi_2(t) = \varphi_1 \otimes \varphi_2$$

 \mathbf{c} ϕ_1 , $\phi_2 \equiv \mathcal{D}$, где она есть

$$(\phi_1 \otimes \phi_2, f \otimes g) = (\phi_1, f) \cdot (\phi_2, g)$$

— поясним: всевозможные пробные $\varphi = \varphi_1 \otimes \varphi_2$ образуют полную систему в $C_0^\infty(T \times T)$. \square

Продолжим рассмотрение соболевских $\check{W}_2^p(T)$ и более общих пространств типа W с помощью преобразования Фурье.

Обозначим через $\mathscr{L}_{2,F}$ гильбертово пространство типа \mathscr{L}_2 с весовой функцией $F(\lambda) \ge 0$, локально ограниченной и растущей при $|\lambda| \to \infty$ не быстрее некоторой степени $|\lambda|^r$ (уточним, $\mathscr{L}_{2,F}$ образуется функциями $f = f(\lambda)$, $F^{1/2}f \in \mathscr{L}_2 = \mathscr{L}_2(R^d)$ со скалярным произведением

$$\langle f, g \rangle_{\mathscr{Q}_{2,F}} = \int f(\lambda) \, \overline{g(\lambda)} \, F(\lambda) \, d\lambda, \quad f, g \in \mathscr{L}_{2,F}.$$

В частности, в $\mathcal{L}_{2,F}$ входят все функции $f \in \mathcal{I}$, убывающие вместе со своими производными при $|\lambda| \to \infty$ быстрее любой степени $|\lambda|^{-\rho}$; при этом сходимость в пространстве \mathcal{I} сильнее, чем в $\mathcal{L}_{2,F}$ (см. (2.11)).

Отметим сразу же, что совокупность $\mathcal{I} \equiv C_0^{\infty} \left(R^d \right)$ илотна в пространстве \mathcal{L}_{2F} ,

$$\mathcal{L}_{2,F} = [\mathcal{I}]$$

— например, любая ограниченная функция f, равная 0 в не некоторого компакта, может быть аппроксимирована в \mathcal{L}_2 надлежащими свертками $f*w \in C_0^\infty(\Lambda)$ с носителями в ограниченной области $\Lambda \subseteq R^d$, и для них

$$||f - f * w||_{\mathcal{L}_{2,F}} \leq C||f - f * w||_{\mathcal{L}_{2} \to 0}.$$

Обратимся к пространствам $W = \mathring{W}(T)$, $X = \mathring{W}(T)^*$, отвечающим в схеме (1.2) - (1.7) форме (1.2) вида

$$\langle u, v \rangle_W = \langle \widetilde{u}, \widetilde{v} \rangle_{\mathscr{Q}_{2,F}}, \quad u, v \in \mathscr{D}. \quad (2.13)$$

Как уже отмечалось (см. (1.9)), для любой области $T \subset R^d$ их всегда можно рассматривать как подпространства в соответствующих

$$W = \overset{\circ}{W}(R^d), \quad X = \overset{\circ}{W}(R^d)^*,$$

что мы и будем делать, остановившись на случае $T=R^{d}$. Согласно (2.13), преобразование Фурье дает нам изометрическое соответствие

$$W \ni \varphi \leftrightarrow \overset{\sim}{\varphi} \in \mathscr{L}_{2,F}$$

для функций $\phi \in \mathcal{D}$, которое продолжается до унитарного соответствия

$$W \leftrightarrow W = \mathcal{L}_{2F},\tag{2.14}$$

при котором для произвольного $u \in W = [\mathcal{D}]$ как предела $u = \lim \varphi$ с $\varphi \in \mathcal{D}$ соответствующее преобразование Фурье

дает $u = \lim \phi \in \mathcal{L}_{2,F}$, а совокупность W всех таких u, $u \in W$, составляет все пространство $\mathcal{L}_{2,F}$ (поясним: функции φ , $\varphi \in \mathcal{D}$, плотны в пространстве $\mathcal{J} \subseteq \mathcal{L}_2$, а значит, и в самом пространстве $\mathcal{L}_{2,F} = [\mathcal{J}]$).

Согласно (2.14), пространство $W = W(R^d)$ содержит все функции $u = f \in \mathcal{F}$, получающиеся из функций $f \in \mathcal{F} \subseteq \mathcal{F}_{2,F}$ обратным преобразованием Фурье, причем сходимость в пространстве $\mathcal{F} \subseteq W$ сильнее, чем в самом W: понятно, что

$$W = [\mathcal{I}].$$

Очевидно, что элементы $x=(u,\ x),\ u\in W,$ сопряженного пространства $X=W^*$ можно рассматривать как обобщенные функции $x\in\mathcal{S}^*,$ непрерывные по $u\in\mathcal{S}$ относительно $\|u\|_W,$ и в соответствии с этим можно использовать обобщенное преобразование Фурье

$$\widetilde{x} = (\widetilde{\varphi}, \widetilde{x}), \quad \widetilde{\varphi} \in \mathscr{I},$$

— см. (2.12); при этом совокупность \widetilde{X} всех \widetilde{x} , $x \in X$, можно отождествить с совокупностью всех линейных непрерывных функционалов $\widetilde{x} = (f, \ \widetilde{x})$ на $f \in \widetilde{W} = \mathcal{L}_{2,F}$ — напомним, что \mathcal{I} плотно в пространстве $\mathcal{L}_{2,F}$.

Для более явного описания обобщенных пробных функций $x \in X = BW$ удобно перейти к комплексно-сопряженным функциям

$$\overline{x} = \overline{Bu} = \mathcal{P}u, \quad u \in W$$

— отметим, что скалярное произведение (2.13) инвариантно относительно перехода к комплексно-сопряженным функциям, и мы имеем

$$X = \overline{X} = \mathscr{P}W$$

Воспользовавшись обобщенным преобразованием Фурье, получим

$$\widetilde{\mathcal{P}u} = F\widetilde{u}, \quad u \in W,$$
 (2.15)

согласно тому, что

$$\begin{split} (\widetilde{\varphi}, \, \overline{\widetilde{\mathcal{F}u}}) &= (\varphi, \, x) = \langle \varphi, \, u \rangle_W = \langle \widetilde{\varphi}, \, \widetilde{u} \rangle_{\mathscr{L}_{2.F}} = \\ &= \int \widetilde{\varphi} F \widetilde{u} \, d\lambda, \quad \widetilde{\varphi} \in \mathscr{I}. \end{split}$$

Обратимся к случаю, когда $1/F(\lambda)$ допустима в качестве весовой функции и можно использовать отвечающее ей

пространство $\mathscr{L}_{2,1/F}$. Очевидно, что в этом случае

$$f = \widetilde{\mathcal{P}u} = \widetilde{Fu}, \quad \widetilde{u} \in \widetilde{W} = \mathcal{L}_{2,F}$$

одновначно характеризуются условием $f \in \mathcal{L}_{2,1/F}$, т. е.

$$\int \frac{|f|^2}{F} d\lambda < \infty.$$

и мы имеем унитарное соответствие

$$X = \mathcal{P}W \leftrightarrow \tilde{X} = \mathcal{L}_{2,1/F},\tag{2.16}$$

задаваемое обобщенным преобразованием Фурье $f=\widetilde{\mathscr{P}}u$ обобщенных пробных функций $\mathscr{P}u,\ u\in W$ поясним:

$$\|\mathscr{P}u\|_{\mathcal{X}} = \sup_{\|\varphi\|_{\mathcal{W}} \leq 1} |\langle \varphi, \mathscr{P}u \rangle| = \sup_{\|\widetilde{\varphi}\|\mathscr{L}_{2,F}\| \leq 1} |\langle \widetilde{\varphi}, f \rangle| = \|f\|_{\mathscr{L}_{2,1/F}}.$$

Подведем итог.

Теорема. Отвечающие форме (2.13) пространства

$$W = \overset{\circ}{W}(R^d), \quad X = \mathscr{P}W = W^*$$

с помощью преобразования Фурье допускают унитарные представления (2.14), (2.16), в рамках которых, согласно (2.15), оператор $\widetilde{\mathcal{P}}$ есть оператор умножения на весовую функцию F. \square

Остановимся подробнее на случае весовой функции типа

$$F(\lambda) \times 1 + |\lambda|^{2p} \qquad (2.17)$$

 \mathbf{c} целым показателем $p \ge 0$.

Отметим, что стоящий справа полином $\mathcal{P}(i\lambda) = 1 + |\lambda|^{2p}$ соответствует, согласно общей формуле (2.9), дифференциальному оператору $\mathcal{P}(\partial) = 1 + (-1)^p \Delta^p$, где

$$\Delta = \sum_{j=1}^{d} \frac{\partial^2}{\partial t_j^2}.$$

оператор Лапласа. Очевидно, что этот полином в условии эквивалентности (2.17) можно заменить на эквивалентный ему полином $\mathscr{P}(i\lambda) = \sum_{|k| \leqslant p} |\lambda|^{2k}$, соответствующий дифференциальному оператору $\mathscr{P}(\partial) = \sum_{|k| \leqslant n} (-1)^{|k|} \, \partial^{2k}$,

которому (см. (2.8)) отвечают соболевские пространства $W = \mathring{W}_2^p, \ X = \mathring{W}_2^{-p}.$ Это указывает на эквивалентность

норм

$$\| \varphi \|_W = \| \widetilde{\varphi} \|_{\mathscr{L}_{2,F}} \times \| \widetilde{\varphi} \|_{\mathscr{L}_{2,\mathcal{P}}} = \| \varphi \|_p, \quad \varphi \in \mathscr{D}.$$

где, напомним, $\|u\|_p^2 = \sum_{\|h\| \le n} \|\partial^h u\|_{\mathscr{L}_2}^2$ есть норма в соболев-

ском пространстве \mathring{W}_{2}^{p} , которое и получается у нас в случае весовой функции типа (2.17):

$$W = \mathring{W}_2^p(R^d)$$

с эквивалентной нормой $\|u\|_{W} \times \|u\|_{p}$, $u \in W$.

Как мы знаем, каждая функция $u \in \mathring{W}_2^p$ имеет обобщенные производные $\partial^h u \in \mathcal{L}_2$ порядка $|k| \leqslant p$, и это полностью характеризует функции $u \in \mathring{W}_2^p(R^d)$ — действительно, условие $\partial^k u \in \mathcal{L}_2(R^d)$ влечет включение $\widehat{\partial^k u} =$ $=(i\lambda)^k ilde u \in \mathscr{L}_2(R^d)$, и если это верно при всех $|k|\leqslant p$, то $\mathscr{P}(i\lambda)^{1/2}\widetilde{u} \in \mathscr{L}_2(R^d)$ для $\mathscr{P}(i\lambda) = \sum_{|k| \leq n} |\lambda|^{2k}$, что дает $\widetilde{u} \in$ $\in \mathcal{L}_{2, \varnothing} = \widetilde{W}, \ u \in W \ (cm. (2.14)).$

Понятно, что вместе с $W=\mathring{W}_2^p$ мы имеет соболевское пространство $X=W^*=\mathring{W}_2^{-p}$ с эквивалентной нормой $\|x\|_X \times \|x\|_{-n}$, $x \in X$.

обобщается на

Рассмотренный в (2.17) случай очевидным образом

$$F(\lambda) \times 1 + \sum_{j=1}^{n} |\lambda_j|^{2p_j}, \qquad (2.17)^r$$

где многомерные $\lambda_j \in R^{d_j}$ указывают соответствующие переменные, в совокупности $\left(\sum_i d_i = d\right)$ представляя $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^d$. Здесь возникают анизотропные соболевские пространства

$$W = \mathring{W}_{2}^{p}, \quad X = W^{*} = \mathring{W}_{2}^{-p},$$

отвечающие мультинндексу $p = (p_1, ..., p_n)$, с эквивалентными нормами

 $||u||_{w} \times ||u||_{p}, \quad ||x||_{x} \times ||x||_{-p}$

— см. (2.8)'; напомним

$$\|u\|_p^2 = \sum_{j=1}^n \sum_{|h_i| \leqslant p_i} \|\partial^{h_j} u\|_{\mathscr{Z}_2}^2, \quad u \in \mathring{W}_2^p.$$

При этом функцип $u \in \mathring{W}^p_2(R^d)$ полностью характеризуются тем свойством, что их обобщенные производные

$$\partial^{k_j} u \in \mathscr{Z}_2, \quad |k_j| \leqslant p_j \quad (j = 1, \ldots, n). \quad \Box$$

Рассматривая W=W(T), $X=\widetilde{W}(T)^*$ в произвольной области $T\subseteq R^d$ как подпространства в $W=\mathring{W}(R^d)$, $X==\mathring{W}(R^d)^*$ (см. по этому поводу (1.9)), их можно описать с помощью преобразования Фурье, обратившись к соответствующим подпространствам $\widetilde{W}=[\widetilde{\mathcal{D}}]\subseteq \mathcal{L}_{2,F}-$ замыканию в $\mathcal{L}_{2,F}$ всех функций $\widetilde{\varphi}$, $\varphi\in\mathcal{D}$ и $\widetilde{X}=[F\widetilde{\mathcal{D}}]\subseteq \mathcal{L}_{2,F}-$ образованном всеми функциями $F\widetilde{u}$, $\widetilde{u}\in W$; здесь помимо представления

$$\widetilde{x} = (\widetilde{q}, \widetilde{x}) = \langle \widetilde{q}, f \rangle_{\mathscr{Q}_{\alpha, F}}, \quad q \in \mathscr{D}.$$

с $f \in \widetilde{W}$ можно использовать для $\widetilde{x} \in \widetilde{X}$ такое же представление с другими $f \in \mathcal{L}_{2,F}$, имеющими одну и ту же ортопроекцию на подпространство $\widetilde{W} \subseteq \mathcal{L}_{2,F}$. \square

Рассмотрим вопрос о том, как соотносятся нормы в пространствах $W = [\mathcal{D}]$, отвечающих форме (2.13) при различных весовых функциях F — речь будет идти о нормах

$$\|q\|_{W} = \|\widetilde{q}\|_{\mathscr{Z}_{\mathfrak{d},F}}, \quad q \in \mathscr{D} = C_0^{\infty}(T).$$

для ограниченных областей $T \subseteq R^d$.

Отметим сразу, что при условии

$$F(\lambda) \geqslant c_0 > 0 \tag{2.18}$$

мы имеем вложения $\mathscr{L}_{2,{\scriptscriptstyle F}}\!\subseteq\!\mathscr{L}_2,\,W\subseteq\!\mathscr{L}_2$ и каждая функция $f\!\in\!\widetilde{W}=\![\widetilde{\mathscr{D}}]\!\subseteq\!\mathscr{L}_{2,{\scriptscriptstyle F}}$ есть преобразование Фурье

$$f(\lambda) = \frac{1}{(2\pi)^{d/2}} \int_{T} e^{-i\lambda t} u(t) dt$$

финитной функции $u \in W$ (u = 0 в не ограниченной области $T \subseteq R^d$), определяющее целую аналитическую функцию $f(\lambda)$ комплексных λ , о которой можно сказать, что $f(\lambda) \equiv 0$ в случае, когда $f(\lambda) = 0$ в некоторой области действительных $\lambda \subseteq R^d$.

Рассмотрим пространства $\mathscr{L}_{2,F}$ при различных $F=F_1,\ F_2$ (считая, что $F_1\geqslant F_2$). Допустим, что разность

 $F_1 - F_2$ имеет своим обобщенным преобразованием Фурье докально квадратично интегрируемую функцию $b(t), t \in \mathbb{R}^d$; положив

$$b(s, t) = b(s+t), \quad (s, t) \in T \times T \subseteq R^{2s},$$

продолжим b(s,t) на все пространство R^{2d} до квадратично интегрируемой функции u и возьмем ее преобразование Фурье $\tilde{b}(\lambda,\mu)$, $(\lambda,\mu) \in R^{2d}$. Используя известные формулы для умножения-свертки и равенство Парсеваля, для $u,v \in C_0^\infty(T)$ получим

$$\int \widetilde{u} \, \widetilde{v} \, (F_t - F_2) \, d\lambda = \frac{1}{(2\pi)^{d/2}} \int \int u \, (s) \, v \, (t) \, \overline{b \, (s+t)} \, ds \, dt =$$

$$= \frac{1}{(2\pi)^{d/2}} \int \int u \, (s) \, v \, (t) \, \overline{b \, (s,t)} \, ds \, dt =$$

$$= \frac{1}{(2\pi)^{d/2}} \int \int \widetilde{u} \, (\lambda) \, \widetilde{v} \, (\mu) \, \overline{\widetilde{b} \, (\lambda,\mu)} \, d\lambda \, d\mu.$$

Считая в дальнейшем $F = F_1$, нужное нам продолжение b(s, t) выберем удовлетворяющим условию

$$\int \int \frac{\left|\widetilde{b}(\lambda, \mu)\right|^2}{F(\lambda) F(\mu)} d\lambda \, d\mu < \infty \tag{2.19}$$

— это можно сделать, например, в случае $F(\lambda) \ge c_0 > 0$. Взяв

$$a(\lambda, \mu) = (2\pi)^{d/2} \frac{\widetilde{b}(\lambda, \mu)}{F(\lambda)F(\mu)},$$

будем иметь $a(\lambda, \mu) = \mathcal{L}_{2,F \times F}$ в пространстве известного нам типа с весовой функцией $F(\lambda)F(\mu), (\lambda, \mu) = R^{2d}, \mu$

$$\iint \widetilde{u} \, \widetilde{v} (F_1 - F_2) \, d\lambda = \langle \widetilde{u} \times \widetilde{v}, \, a \rangle_{\mathscr{Q}_{2, F \times F}}$$

с $\widetilde{u} \times \widetilde{\iota} = \widetilde{u}(\lambda)\widetilde{v}(\mu) \in \mathscr{L}_{2,F \times F}$. Непосредственно видио, что ограниченная симметрическая билинейная форма

$$\langle f,g\rangle_{\mathcal{Z}_{2,F_{1}}}-\langle f,g\rangle_{\mathcal{Z}_{2,F_{2}}}=\langle f,Ag\rangle_{\mathcal{Z}_{2,F}}$$

от $f,\ g \in \mathcal{W}$ допускает указанное здесь представление с симметрическим вполне непрерывным (компактным) оператором A в гильбертовом пространстве $\mathcal{W} \subseteq \mathcal{L}_{2,F}$ поясним: для ортонормированного базиса $\{\widetilde{u}_{\mathit{R}}\}$ в \mathcal{W} мы

имеем ортонормированную систему $\{\widetilde{u}_h \times \widetilde{u}_i\}$ в $\mathscr{L}_{2,F \cap F}$ и $\sum_{k,j} |\langle \widetilde{u}_k, A\widetilde{u}_j \rangle_{\mathscr{L}_{2,F}}|^2 =$

$$= \sum_{k,j} |\langle \widetilde{u}_k \times \widetilde{u}_j, a \rangle|^2_{\mathscr{L}_{2,F \times F}} \leqslant \|a\|^2_{\mathscr{L}_{2,F \times F}} < \infty$$

(обладающий указанным свойством оператор A называют оператором Гильберта — Шмидта). Как известно, верхияя грань

$$\sup \langle f, Af \rangle_{\mathcal{L}_{2,F}} = c$$

всем $f \in \widetilde{W}$, $\|f\|_{\mathscr{L}_{2,F}} = 1$, достигается на собствениой функции $f = f_0 \in \widetilde{W}$. В нашем случае $F = F_1 \geqslant F_2$ мы имеем $0 \leqslant c \leqslant 1$. Покажем, что c < 1. Действительно, при c=1 мы имели бы $\int |f_0|^2 F_2(\lambda) d\lambda = 0$ и $f_0(\lambda) = 0$ в той области $\lambda \in \mathbb{R}^d$, где $F_2(\lambda) \neq 0$, но это в рассматриваемом случае $F = F_1$ типа (2.18) может быть справедливо лишь для $f_0 \equiv 0$. В итоге мы имеем c < 1 и

$$(1-c)\|f\|_{\mathscr{L}_{2,F_{1}}}\leqslant \|f\|_{\mathscr{L}_{2,F_{2}}}\leqslant \|f\|_{\mathscr{L}_{2,F_{1}}},\quad f\in \widetilde{W}.$$
 Сформулируем полученный при сделанных выше предпо-

ложениях результат.

 \mathbb{H} емма. Для любой ограниченной области $T \subseteq R^d$ имеет место эквивалентность норм

$$\|\widetilde{\varphi}\|_{\mathscr{L}_{2,F_{1}}} \times \|\widetilde{\varphi}\|_{\mathscr{L}_{2,F_{2}}}, \quad \varphi \equiv C_{0}^{\infty}(T).$$
 (2.20)

Пусть, например, весовая функция F удовлетворяет условию

$$0 < \underline{\lim_{\lambda \to \infty} |\lambda|^{-2p} F(\lambda)} \leqslant \overline{\lim_{\lambda \to \infty} |\lambda|^{-2p} F(\lambda)} < \infty \qquad (2.21)$$

или более широкому условию

$$0 < \lim_{\overline{\lambda} \to \infty} \left(\sum_{j=1}^{n} |\lambda_{j}|^{2p_{j}} \right)^{-1} F(\lambda) \leq \lim_{\overline{\lambda} \to \infty} \left(\sum_{j=1}^{n} |\lambda_{j}|^{2p_{j}} \right)^{-1} F(\lambda) < \infty$$

$$(2.21)'$$

(уточним: при достоточно больших д она представляет собой функцию типа (2.17) или соответственно функцию более широкого типа (2.17)'). Очевидно, можно взять другую весовую функцию $F = F_1$ в точности тина (2.17), (2.17)', совпадающую с исходной функцией $F=F_2$ при достаточно больших λ и удовлетворяющую условию (2.18). Как мы знаем, для любой области $T\subseteq R^d$ при условии (2.17), (2.17)' мы имеем соболевские пространства $W=\mathring{W}_2^p(T)$, $X=W^*=\mathring{W}_2^{-p}(T)$. Разпость F_1-F_2 есть финитная функция, и ее преобразование Фурье допускает нужное пам продолжение с условием (2.19), так что, согласно (2.20), получается следующий результат.

Теорема. Форме (2.13) с весовой функцией типа (2.21), (2.21)' в любой ограниченной области $T \subseteq R^d$ отвечают соответствующие соболевские пространства $W = \hat{W}_2^p(T)$, $X = \hat{W}_2^{-p}(T)$ с эквивалентными нормами

$$\|u\|_{w} \times \|u\|_{p}, \quad \|x\|_{x} \times \|x\|_{-p}.$$

5° Положительные дифференциальные операторы. Обратимся снова к дифференциальному оператору $\mathcal{P} = \mathcal{P}(\partial)$ с постоянными коэффициентами в (2.9) и соответствующим ему по формуле (2.9)' полиному

$$\mathscr{P} = \mathscr{P}(i\lambda) = \sum_{|h| \le m} a_h (i\lambda)^h, \quad \lambda \in \mathbb{R}^d.$$

Положительная определенность формы (2.4) (иначе говоря, положительность оператора $\mathscr{P} = \mathscr{P}(\partial) \geqslant 0$) диктует положительность $\mathscr{P}(i\lambda) \geqslant 0$, $\lambda \in \mathbb{R}^d$. В самом деле, условие

$$(\varphi, \mathcal{P}\varphi) = \int [\widetilde{\varphi}]^2 \mathcal{P}(i\lambda) d\lambda \geqslant 0$$

для определенного на $\varphi \in C_0^\infty(R^d)$ оператора $\mathscr P$ распространяется на все функции $\varphi \in \mathscr I$, преобразование Фурье которых дает, в частности, все функции $\overset{\sim}{\varphi} \in C_0^\infty(R^d)$, и указанное условие, очевидно, равносильно положительности $\mathscr P(i\lambda) \geqslant 0$, $\lambda \in R^d$.

Понятно, что имеет место представление (2.13) с весовой функцией $F(\lambda) = \mathcal{P}(i\lambda)$. \square

Объединив все члены полинома $\mathscr{P}(i\lambda)$ старшей степени m, получим однородную форму

$$\sum_{|\mathbf{k}|=m} a_{\mathbf{k}} (i\lambda)^{\mathbf{k}} = i^{m} \sum_{|\mathbf{k}|=m} a_{\mathbf{k}} \lambda^{\mathbf{k}}, \quad \lambda \in \mathbb{R}^{d}.$$

Для каждого $\lambda = \lambda_0$, где эта форма не равна 0, она при $\lambda = r\lambda_0$ растет с $r \to \infty$, как r^m быстрее, чем остальные члены полинома $\mathcal{P}(i\lambda) \ge 0$, и ясно, что в случае дей-

ствительных коэффициентов здесь должно быть m=2p, причем

$$(-1)^p \sum_{|h|=2p} a_h \lambda^k \geqslant 0$$

при всех $\lambda \subseteq R^d$.

Допустим, имеет место условие эллиптичности оператора $\mathscr{P}=\mathscr{P}(\partial)$, выраженное строгой положительной определенностью

$$(-1)^p \sum_{|h|=2p} a_h \lambda^h > 0 \tag{2.22}$$

при $\lambda \neq 0$. Классическим примером здесь может служить оператор $\mathcal{P}(\partial) = (-1)^p \Delta^p$, представляющий собой взятую с надлежащим знаком p-ю степень оператора Лапласа

$$\Delta = \sum_{j=1}^d rac{\sigma^2}{\partial t_j^2}$$
 п отвечающий полиному $\mathscr{P}(i\lambda) = |\lambda|^{2p}$.

В условии (2.22) старшая однородная форма порядка m=2p такова, что

$$c_1 r^{2p} \leqslant (-1)^p \sum_{|k|=2p} a_k \lambda^k \leqslant c_2 r^{2p}$$

при всех λ , $|\lambda| = r$, где c_1 , $c_2 > 0$ есть min, max этой формы при $|\lambda| = 1$, и при достаточно больших $r = |\lambda|$, очевидно, $F(\lambda) = \mathcal{P}(i\lambda) \times |\lambda|^{2p}$ удовлетворяет условию (2.21).

Как следствие, получаем, что для эллиптического oneратора $\mathcal{P} = \mathcal{P}(\partial)$ в каждой ограниченной области $T \subseteq R$ имеет место эквивалентность

$$(u, \mathcal{P}u) \times \sum_{|h| \le p} \|\partial^h u\|_{\mathcal{L}_2}^2, \quad u \in \mathring{W}_2^p(T).$$

Понятно, что в нашей схеме (1.2)-(1.7) мы в каждой ограниченной области $T\subseteq R^d$ имеем соболевские пространства

$$W = \mathring{W}_{2}^{p}(T), \quad X = \mathring{W}_{2}^{-p}(T)$$

с эквивалентными нормами $\|u\|_w \times \|u\|_p$, $\|x\|_x \times \|x\|_{-p}$. \square Обобщением условия эллиптичности (2.22) для дифференциального оператора $\mathscr{P}(\partial) \geqslant 0$ может служить условие

$$\mathscr{P}(i\lambda) \times \sum_{j=1}^{m} |\lambda_{j}|^{2p_{j}} \tag{2.22}$$

при достаточно больших $|\lambda|$, где $\lambda_j \in R^{d_j}$ указывает на j-ю группу переменных, в совокуппостн $\left(\sum_j d_j = d\right)$ = d) представляющих $\lambda = (\lambda_1, \ldots, \lambda_n) \in R^d$; согласно (2.21)', для каждой ограниченной области $T \subseteq R^d$ имеет место эквивалентность

$$(u, \mathcal{P}u) \times \sum_{j=1}^{\infty} \sum_{\|k_j\| \leq p_j} \|\partial^k u\|_{\mathcal{L}_2}^2, \quad u \in \mathring{W}_2^p(T).$$

где $\tilde{W}_{2}^{P}(T)$ есть соболевское пространство с мультинннексом $p=(p_1,\ldots,p_n).$

Характерным здесь является

$$\mathcal{P} = L^*L = -\frac{\partial^2}{\partial t_1^2} + A^2$$

с нараболическим оператором $L = \partial/\partial t_1 + A$, где $\partial/\partial t_1$ — производная по переменному $t_1 \subseteq R^1$, а A — симметрический эллиптический оператор по остальным переменным $(t_2, \ldots, t_d) \subseteq R^{d-1}$ с производными ∂^k , $|k| \leq p$, $k = (k_2, \ldots, k_d)$; согласно (2.21)', мы пмеем

$$\langle u, \mathcal{P}u \rangle = \|Lu\|_{\mathcal{L}_{2}}^{2} \times$$

в любой ограниченной области $T \subseteq R^{\perp}$. \square

Обратимся теперь к произвольному положительному оператору $\mathscr{P} = \mathscr{P}(\partial) \geqslant 0$ с полиномом $\mathscr{P}(i\lambda) \geqslant 0$, удовлетворяющим условию

$$\lim_{\overline{\lambda} \to \infty} \mathcal{P}(i\lambda) > 0. \tag{2.23}$$

Согласно упптарному представлению (2.15) и нашей лемме из н. 4° (см. (2.20)), для $\mathcal{D} = C_0^{\infty}(T)$ в каждой ограничениой области $T \subseteq R^t$ мы будем иметь

$$(\varphi, \mathscr{P}\varphi) \times \|\widetilde{\varphi}\|_{\mathscr{L}_{2,F}}^2, \quad \varphi \in \mathscr{D}.$$

выбрав весовую функцию F так, что $F(\lambda) = \mathcal{P}(i\lambda)$ при достаточно больших $|\lambda|$ п $F(\lambda) \ge \mathcal{P}(i\lambda)$, $F(\lambda) \ge c > 0$, при всех $\lambda \in R^d$. Очевидно, что $\|\widetilde{\mathfrak{q}}\|_{\mathcal{L}_{2,F}}^2 \ge c \|\widetilde{\mathfrak{p}}\|_{\mathcal{L}_2}^2$ для так выбранной $F(\lambda) \ge c > 0$. В итоге получаем, что при условии (2.23) для дифференциального оператора $\mathcal{P} = \mathcal{P}(\partial)$ в каждой ограниченной области $T \subseteq R^d$ выполняется усло-

вие полуограниченности

менному t_i с оцепкой

$$(\varphi, \mathscr{P}\varphi) \geqslant c \|\varphi\|_{\mathscr{L}_{2}}^{2}, \quad \varphi \in C_{0}^{\infty}(T),$$

со всеми вытекающими из пего следствиями (см. (2.5)). \square

Характерный пример, когда парушается условие (2.23), дает оператор $\mathcal{P} = L^*L$ с

$$L=\partial^p, \quad p=(p_1,\ldots, p_d),$$

и полином $\mathcal{P}(i\lambda) = |\lambda_1|^{2p_1} \dots |\lambda_d|^{2p_d}$. Однако и для него в каждой ограниченной области $T \subseteq R^d$ выполняется условие (2.5). более того, в любой области тина

$$T \subseteq \{t: \ t_j > t_j^0; \quad j = 1, \ldots, d\}$$

выполняется условне полуограниченности (2.6). Покажем это, выделив $p_j \neq 0$ и считая здесь $j=4,\ldots,n < d$. Воснользовавшись тем, что всякую функцию $u \in C_0^\infty(T)$ можно представить p_j -кратным повторным интегралом от производной $\partial^{P_j}u$ и применяя эту

$$|u(t)|^2 \leqslant C \int_{t_j^0}^{t_j'} |\partial^{p_j} u|^2 dt_j$$

в любом конечном интервале $t_j^0 < t_j < t_j'$, и применяя эту оценку к $u = \varphi$ при j = 1, а затем последовательно при $j = 2, \ldots, n$ к соответствующим подынтегральным функниям

$$u = \partial^{p_1} \varphi, \quad \partial^{(p_1, p_2)} \varphi = \partial^{p_2} (\partial^{p_1} \varphi), \ldots$$

получим

$$| \varphi(t) |^2 \leqslant C \int_{t_1^0}^{t_1'} \dots \int_{t_n^0}^{t_n'} | \partial^p \varphi |^2 dt_1 \dots dt_n$$

в любой ограниченной области $T_{1oc} \subseteq \{t: t_j^0 < t_j < t_j': j = 1, ..., n\};$ дополнительное интегрирование дает здесь очевидную оценку

$$\int_{T_{\text{loc}}} |\varphi(t)|^2 dt \leqslant C \int_{T} |\partial^p \varphi|^2 dt,$$

выражающую для $\mathscr{P} = L^*L$, $L = \partial^p$, условие

$$\langle \varphi, \mathscr{P} \varphi \rangle_{\mathscr{L}_{2}}^{1/2} \geqslant c \int_{T_{10c}} |\varphi(t)|^{2} dt, \quad \varphi \in \mathscr{D}.$$
 (2.24)

6° Мультипликаторы и локализация пробных обобщенных функций. Рассмотрим вопрос о том, когда в наших пространствах $W = [\mathcal{D}]$, $X = W^* \subseteq D^*$ определено умиожение на ту или иную функцию w. Скажем, умножение на бескопечно дифференцируемую функцию w определено для любой обобщенной функции $x \in D^*$ как

$$wx = (\varphi, wx) = (w\varphi, x), \qquad \varphi \in \mathcal{D}.$$

но остается вопрос о том, будет ли это для $x \in X \in \mathcal{D}^*$ давать функцию $wx \in \mathcal{D}^*$ из X.

Допустим, что функция w такова, что определенное указаниой формулой произведение $wx \in X$ при всех $x \in X$ (это заключает в себе, в частности, что $wq \in W$ при всех $q \in \mathcal{D}$). Покажем, что (линейный) оператор умпожения $x \to wx$ замкнут в X. При сходимости $x_n \to x$, $wx_n \to y$ в X мы имеем также слабую сходимость

$$(\varphi, wx_n) = (w\varphi, x_n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\varphi, y) = (w\varphi, x) = (\varphi, wx), \quad \varphi \in \mathcal{D},$$

и видно, что y=wx. Как известно, определенный на всем гильбертовом пространстве липейный замкиутый оператор является ограниченным, и на всех $x\in X$

$$\|wx\|_X \leqslant C\|x\|_X$$

Отсюда следует, что

$$|(wq. x)| = |(q. wx)| \le ||q||_w ||wx||_x \le C ||q||_u ||x||_x$$

14

$$||wq||_W = \sup_{||x||_X \le 1} |(wq, x)| \le C ||q||_W, \quad q \in \mathcal{D}.$$

т. е. что непосредственно определенный па \mathcal{D} оператор умножения $\phi \mapsto u \phi$ ограничен в W. В свою очередь при условии ограниченности этого оператора на \mathcal{D} в $W = [\mathcal{D}]$

$$||w\varphi||_{w} \leqslant C||\varphi||_{w}, \quad \varphi \in \mathcal{D}, \tag{2.25}$$

для любого $x \in X$ и $wx = (\varphi, wx), \varphi \in \mathcal{D}$, получается $\|(\varphi, wx)\| \le \|w\varphi\|_{W} \|x\|_{X} \le C \|\varphi\|_{W} \|x\|_{X}$,

60

что указывает на принадлежность $wx \in X = W^*$ с нормой $||wx||_{x} \leq C||x||_{x}$. (2.25)'

Отметим, что ограниченный в W оператор умножения на функцию w, непосредственно определенный для $\mathfrak{q} \in$ $\in \mathscr{D}$, однозначно продолжается на все пространство \dot{W} = $= [\mathcal{D}]$ как

$$wu = \lim w\varphi \tag{2.26}$$

для всех $u = \lim \varphi$ в W. В случае, когда X есть пространство типа W $(X = [\mathcal{D}])$ и $W \subseteq \mathcal{D}^*$, определенный в (2.26) оператор умножения действует на предельные элементы $u = \lim \varphi$ как на обобщенные функции $u \in \mathcal{D}^*$. поскольку

$$(x, wu) = (wu, x) = \lim (w\varphi, x) =$$

$$= \lim (\varphi, wx) = (u, wx) = (wx, u), \quad x \in \mathcal{D}.$$

Подведем итог следующим предложением.

T е о р е м а. Оператор умножения на w определен в пространствах $W = [\mathcal{D}]$. $X = W^*$ тогда u только тогда, когда он ограничен па Д в W. 🗆

Для примера обратимся к условию ограниченности (2.25) в случае соболевских пространств W = $=\mathring{W}_{2}^{p}(T),\;\;X=\mathring{W}_{2}^{-p}(T).\;\;$ Очевидпо, что оно выполняется для любой p-гладкой функции $w=w\left(t
ight) ,$ ограниченной вместе с производными $\hat{\partial}^k u$ порядка p — паномним здесь формулу Лейбница

$$\partial^{k}(w\varphi) = \sum_{l \geq k} \frac{k!}{l! (k-l)!} \partial^{l} w \partial^{k-l} \varphi$$

с мультипидексами k, l, согласно которой

$$\| w \varphi \|_W^2 \times \sum_{|h| \le p} \| \partial^h (w \varphi) \|_{\mathcal{L}_2}^2 \le$$

$$\leqslant C \sum_{|i| \leqslant n} \|\partial^{j} \varphi\|_{\mathscr{L}_{2}}^{2} \times C \|\varphi\|_{W}^{2}, \quad \varphi \in \mathscr{D}.$$

Это относится и к соболевским пространствам с мультииндексом $p = (p_1, \ldots, p_n)$, указывающим порядок p_j производных по соответствующей группе переменных $t_{\mathbf{j}}$ \equiv $oldsymbol{\in} R^{d_j}$ в представлении $t = (t_1, \ldots, t_n) oldsymbol{\in} R^d$ с $d = \sum_{i=1}^n d_i$;

напоминм, что

$$\|\varphi\|_p^2 = \sum_{j=1}^{n} \sum_{|h_j| \leq p_j} \|\partial^{h_j} \varphi\|_{\mathscr{Z}_2}^2.$$

Более ишрокий класс пространств можно определить

условием
$$C\sum_{k}\int\limits_{T_{*}}\left|\,\partial^{k}\mathbf{q}\,\,\right|^{2}dt\leqslant \|\,\mathbf{q}\,\|_{W}^{2}\leqslant C\sum_{k}\|\,\partial^{k}\mathbf{q}\,\|_{\mathscr{L}_{2}}^{2},\qquad \mathbf{q}\in\mathscr{D},\qquad (2.27)$$

иля каждой ограниченной области $T_{\text{loc}} \subseteq T$, в которое вместе с каждой производной $\partial^k \varphi$ входят и все проызводные $\partial^l \varphi$ меньшего порядка $l \leq k$ ($l_i \leq k_i, i=1, \ldots$... d, для мультинидексов l, k). При условии (2.27)

в $W = [\mathcal{D}]$, $X = W^*$ определено умпожение на все фивитные функции $w \in \ell_0^\infty(T)$ — очевидио, что, взяв $T_{\text{inf}} \cong \text{supp } w$, получим

$$\| w \varphi \|_W^2 \leqslant C \sum_k \| \partial^k (w \varphi) \|_{\mathscr{L}_2}^2 \leqslant C \sum_k \int_{T_{\mathrm{loc}}} | \partial^k \varphi |^2 dt \leqslant C \| \varphi \|_W.$$
 \square Рассмотрим вопрос об умножении для пространств

 $W = [\mathcal{D}], X = W^*$, отвечающие форме (2.13), используя для W унитарное представление $\hat{W} \subseteq \mathscr{L}_{2,F}$ в пространстве $\mathcal{L}_{2,F}$ с весовой функцией F (см. (2.15)). Пусть весовая функция $F(\lambda)$, $\lambda \in \mathbb{R}^d$, допускает оценку

$$F(\lambda + \mu) \leq F(\lambda) G(\mu)$$
 (2.28) при всех $\mu \in R^d$ (например, это так для весовых функций F тина (2.17), (2.17)', дающих соболевские про-

странства). Произведение иф имеет своим преобразованием Фурье свёртку $\widetilde{w\varphi} = (2\pi)^{-3/2}\widetilde{w} * \widetilde{\varphi}$, и условие ограниченности

свёртку
$$\widetilde{w\phi} = (2\pi)^{-d/2}\widetilde{w}*\widetilde{\phi}$$
, и условие ограниченности (2.25) можно выразить в форме $\|\widetilde{w}*\widetilde{\phi}\|_{\mathscr{L}_{2,F}} \leqslant C \|\widetilde{\phi}\|_{\mathscr{L}_{2,F}}, \quad \phi \in \mathscr{D}.$

Допустим, что преобразование Фурье \widetilde{w} таково, что функция $f(\mu) = |\widetilde{w}(\mu)| G(\mu)^{1/2}$ является интегрируемой,

$$\tilde{|w|} |\widetilde{w}(\mu)| G(\mu)^{1/2} d\mu < \infty.$$
 (2.29)

Тогда, воспользовавшись неравенством

$$F(\lambda) \leq F(\lambda - \mu)G(\mu)$$

62

и считая $\int f(\mu) d\mu == 1$, получим

$$\begin{split} \widetilde{w} * \widetilde{\varphi} \|_{\mathscr{Z}_{2,F}}^2 &= \int \left| \int \widetilde{\varphi} \left(\widehat{\lambda} - \mu \right) \widetilde{w} \left(\mu \right) F \left(\widehat{\lambda} \right)^{1/2} d\mu \right|^2 d\lambda \leqslant \\ &\leqslant \int \left| \int \widetilde{\varphi} \left(\widehat{\lambda} - \mu \right) F \left(\widehat{\lambda} - \mu \right)^{1/2} f \left(\mu \right) d\mu \right|^2 d\lambda \leqslant \\ &\leqslant C \int \int \left| \widetilde{\varphi} \left(\widehat{\lambda} - \mu \right) \right|^2 F \left(\widehat{\lambda} - \mu \right) f \left(\mu \right) d\mu d\lambda = \\ &= C \int \left| \int \left| \widetilde{\varphi} \left(\widehat{\lambda} - \mu \right) \right|^2 F \left(\widehat{\lambda} - \mu \right) d\lambda \right| f \left(\mu \right) d\mu = \left\| \widetilde{\varphi} \right\|_{\mathscr{Z}_{2,F}}^2 \end{split}$$

— видно, что условие ограниченности (2.25) выполнено. Сформулируем полученный результат.

Теорема. В отвечающих весовой функции F типа (2.28) пространствах $W = [\mathcal{D}]$. $X = W^*$ определено умножение на любую функцию w, удовлетворяющую условию (2.29).

Попятно, что эта теорема об умножении переносится на все пространства $W = [\mathcal{D}], \ X = W^*$ с эквивалентными нормами

$$\|\phi\|_W^2 \times \|\widetilde{\phi}\|_{\mathscr{L}_{2,F}}^2, \quad \phi \in \mathscr{D}. \quad \Box$$

Отметим широкий класс пространств

$$W = \mathring{W}(T) = [\mathcal{D}] \subseteq \mathcal{D}^*$$

с «аппроксимационной единицей», образованной носледовательностью мультипликаторов $w_n = w(t/n), n \to \infty, w \in C_0^\infty(R^d), w = 1$ в окрестности t = 0; здесь мы имеем в виду W с умножением на функции $w \in C_0^\infty(R^d)$, такие что последовательность операторов умножения на $w_1 = w(t/n)$ является ограниченной,

$$\|w_n\varphi\|_w \leq C\|\varphi\|_w, \qquad \varphi \in \mathscr{D}.$$

Примером здесь могут служить соболевские пространства $W = \mathring{W}_2^p(T)$, связанные с дифференциальными операторами (2.8), (2.8)'. Для таких пространств $W = \mathring{W}(T)$ локализация функций $u \in W$ в подобласти $S \subseteq T$ дает следующий результат.

Теорема (о локализации). Функции $u \in W$ с носителями $\sup u \subseteq S$ входят в подпространство

$$\mathring{W}(S) = [C_{\theta}^{\infty}(S)].$$

(Подчеркнем, что здесь S может быть произвольным открытым множеством $S \subseteq T$ в R^{i} .)

вым открытым множеством $S \subseteq T$ в R^{t} .)
В случае компактного носителя $\sup u \subseteq S$ можно взять мультипликатор $w \subseteq C_0^{\infty}(S), w = 1$ в окрестно-

но взять мультипликатор $w \in C_0(S)$, w=1 в окрестности компакта $\sup u$, для которого $u=wu=\lim w \varphi$ в представлении $u=\lim \varphi$ в W как предела функций $\varphi \in \mathcal{D} = C_0^\infty(T)$, и, таким образом, $u=\lim w \varphi$ для $w \varphi \in \mathcal{D}$

 $\in C_0^\infty(S)$. В случае произвольного носителя $\sup u \equiv S$ можно взять «аппроксимационную едипицу» $w_n = w(t/n)$, для которой $u = \lim w_n u \in \mathring{W}(S)$ как предел функций

 $w_n u \in W(S)$ с компактными посителями supp $w_n u \subseteq$ \subseteq supp $u \subseteq S$. Здесь для ограниченной по норме последовательности операторов умножения на w_n с очевидной станувательности $v_n \in S$ от $v_n \in S$ от v

сходимостью $w_n \varphi \to \varphi$ в $\mathscr{D} = C_0^\infty(T) \subseteq W$ мы имеем $\|u - w_n u\|_W \leqslant \|u - \varphi\|_W + \|\varphi - w_n \varphi\|_W + \|w_n (\varphi - u)\|_W$

$$c \varphi \rightarrow u B W. \square$$

Рассмотрим еще один вопрос, касающийся локализации функций $u \in W$ в той или иной области $S \subseteq T$.

Напомиим, что пространство $W = \mathring{W}(T)$ было введено как пополнение исходного $\mathscr{D} = C_0^{\infty}(T)$ в области $T \subseteq R^d$. При этом, имея дело с $W = \mathring{W}(T)$, мы условились рас-

сматривать $u \in W$ как функции u = (x, u) обобщенного переменного $x \in X$, взяв соответствующие $x = (\varphi, x)$, $q \in \mathcal{D}$, за пробные обобщенные функции — см. (1.6), (1.7). Этот полход можно использовать, чтобы определять функции $u \in W$ в области S как u = (x, u) с помощью пробных $x \in X$, скажем, имеющих носители $\sup x \subseteq [S]$ в замыкании [S] этой области. Обозначик X(S) совокуплость всех таких $x \in X$, составляющую подпространство в гильбертовом X, введем соответствующий функциональный класс W(S) как пространство всех u =

X(S) совокущ ость всех таких $x \in X$, составляющую подпространство в гильбертовом X, введем соответствующий функциональный класс W(S) как пространство всех u = (x, u), липейных и непрерывных по $x \in X(S)$. Понятно, что всякая функция $u \in W(S)$, будучи линейным непрерывным функционалом на подпространстве $X(S) \subseteq X$, продолжается до функции $u \in W = X^*$ во всей об-

ласти $T \supseteq S$, где она определяется с помощью обобщенных пробных $x \in X$ как u = (x, u), $x \in X$.

Выделим здесь специально важный случай, когда X есть пространство типа $W, X = [C_0^\infty(T)]$. и в соответствии с этим каждая функция $u \in W(S)$ представляет в области S обобщенную функцию

$$u = (\varphi, u), \quad \varphi \in C_0^{\infty}(S).$$
 (2.30)

на пробных $\varphi = x \in X(S) \supseteq C_0^\infty(S)$; отметим здесь, например, что для соболевских $W = \mathring{W}_2^p(T), X = \mathring{W}_2^{-p}(T)$ мы имеем $X(S) = \left[C_0^\infty(S)\right]$, так что $u \in W(S)$ можно отождествить с обобщенной функцией $u = (\varphi, u)$; $\varphi \in C_0^\infty(S)$ на плотном в X(S) пространстве $\mathscr{D} = C_0^\infty(S)$ в области $S \subseteq T$.

Казалось бы, само определение W(S) указывает на зависимость этого функционального класса от соответствующей области $T \cong S$, однако это не совсем так.

Рассмотрим $S \subseteq T$ с замыканием $[S] \subseteq T_{\text{loc}}$ в области $T_{\text{loc}} \subseteq T$ с соответствующими $W_{\text{loc}} = \hat{W}(T_{\text{loc}})$ и $X_{\text{loc}} = \hat{X}(T_{\text{loc}})$, интерпретируя X_{loc} , согласно (1.9), как подпространство $X_{\text{loc}} \subseteq X = \hat{X}(T)$, которое получается из X факторизацией по норме

$$||x||_{X_{\text{loc}}} = \sup_{\|\varphi\|_{\mathcal{W} \times \mathbb{T}}} |(\varphi, x)|,$$
 (2.31)

где $\varphi \in C_0^\infty(T_{\mathrm{loc}})$. Допустим, мы имеем дело со случаем, когда в исходном $X = \mathring{X}(T)$ определено умножение на $w \in C_0^\infty(T)$ с w(t) = 1 при $t \in [S]$. Тогда для $x \in C_0^\infty(S) \subseteq X$ мы имеем

$$\| x \|_{X_{1\text{oc}}} \leq \| x \|_{X} = \sup_{\| \varphi \|_{W} \leq 1} |(w \varphi, x)| \leq$$

$$\leq C \sup_{\| w \varphi \|_{W} \leq 1} |(w \varphi, x)| \leq C \| x \|_{X_{1\text{oc}}}.$$

Пмея эквивалентные нормы

$$||x|| = ||x||_{X_{10c}} \times ||x||_X, \quad x \in C_0^{\infty}(S).$$
 (2.32)

для различных областей $T_{loc} \supseteq S$ мы получаем один и тот же функциональный класс W(S), образованный всеми обобщенными функциями u = (x, u), непрерывными по $x \in C_0^{\infty}(S)$ относительно $\|x\|$.

Как пример укажем здесь соболевские пространства

$$W(S) = W_2^p(S),$$
 (2.33)

отвечающие соответствующим $W = \mathring{W}_{2}^{p}(T) = [C_{0}^{\infty}(T)],$ $p = 0, \pm 1, \dots$

Уже говорилось, что наряду со скалярными u = W(S) мы будем иметь дело с обобщенными случайными функциями $u = (x, u), x \in C_0^{\infty}(S)$, непрерывными относительно нормы $\|x\|$ в соответствующем X (типа W) со значениями в гильбертовом пространстве $\mathbf{H} = \mathcal{L}_2(\Omega)$ случайных величин на вероятностном Ω ; принадлежность к этому классу будем указывать записью $u \in \mathbf{W}(S)$.

§ 3. Реализация случайных обобщенных функций и некоторые теоремы вложения

1° Обобщенные функции и соболевские пространства. Обобщенная функция $f \in \mathcal{D}^*$ в области $T \subseteq R^d$ представляет собой линейную функцию $f = (\varphi, f)$ переменного $\varphi \in \mathcal{D}$, в каждой ограниченной подобласти T_{loc} с замыкапием $[T_{\text{loc}}] \subseteq T$, являющуюся непрерывной по $\varphi \in \mathring{W}_2^\infty(T_{\text{loc}}) = \bigcap_p W_2^p(T_{\text{loc}})$, и локализация ее как

wf с помощью мультипликатора $w \in C_0^\infty(T_{loc})$ дает линейный непрерывный функционал

$$wf \in \mathring{W}_{2}^{\infty}(T_{loc})^{*} = \bigcup_{p} \mathring{W}_{2}^{-p}(T_{loc}),$$

т. е. при некотором р

$$wf \in \mathring{W}_{2}^{-p}(T_{loc}). \tag{3.1}$$

Понятно, что выраженное в (3.1) свойство равносильно тому, что в любой ограниченной области $T_{\rm loc}$ с замыканием $[T_{\rm loc}] \subseteq T$ с ужение $f = (\varphi, f)$, $\varphi \in C_0^\infty$ ($T_{\rm loc}$), обобщенной функции $f \in \mathcal{D}^*$ представляет элемент из соболевского пространства $\mathring{W}^{-p}(T_{\rm loc})$ с ноказателем p, отвечающим соответствующему мультипликатору $w \in C_0^\infty(T)$ в (3.1), w = 1 на $[T_{\rm loc}]$; указанное здесь свойство локальной принадлежности обобщенной функции $f \in \mathcal{D}^*$ пространствам $\mathring{W}_2^{-p}(T_{\rm loc})$ выразим как

$$f \stackrel{\text{loc}}{\subseteq} \mathring{W}^{-p}(T_{\text{loc}}) \tag{3.1}$$

с отвечающим области T_{loc} показателем p.

Этот подход можно использовать и для характеризации векторных обобщенных функций $f=(\varphi,\ f),\ \varphi\in \mathcal{D}$ (со значениями в гильбертовом пространстве) — нужно лишь использовать векторные $W_2^{-p}(T)$ как пространства вектор и ых $f=(\varphi,\ f),$ непрерывных относительно пробных $\varphi\in \mathcal{D}$ по порме $\|\varphi\|_p$ в соответствующих соболевских пространствах $\mathring{W}_2^p(T)=[\mathcal{D}].$ Так и будет нами сделано в дальнейшем для случайных обобщенных функций и их реализаций, и здесь нам потребуется одно уточнение в шкале соболевских пространств

$$\ldots \subseteq \mathring{W}_{2}^{p+1} \subseteq \mathring{W}_{2}^{p} \subseteq \ldots \subseteq \mathscr{L}_{2} \subseteq \ldots \subseteq \mathring{W}_{2}^{-p} \subseteq \mathring{W}_{2}^{-p-1} \subseteq \ldots$$

касающееся так называемых вложений Гильберта— Шмидта.

 2° Реализация случайных функций и некоторые теоремы вложения. Говоря о случайной обобщенной функции $\xi = (\varphi, \xi)$, мы условились иметь в виду векторную линейную функцию от пробных $\varphi \in \mathcal{D}$, значения которой в гильбертовом пространстве $\mathbf{H} = \mathcal{L}_2(\Omega)$ случайных величии непрерывны относительно сходимости в $\mathcal{D} = C_0^{\circ}(T)$. Как отмечалось, можно считать, что значения $(\varphi, \xi) \in \mathbf{H}$ непрерывны относительно некоторой полунормы $\|\varphi\|_{W}$. Которая в свою очередь непрерывна относительно сходимости в \mathcal{D} , и $\xi = (\varphi, \xi)$ можно рассматривать как векторную липейную функцию на соответствующем гильбертовом пространстве $W = [\mathcal{D}]$, — см. н. 1° § 1.

Имея это в виду, рассмотрим и роизвольное гильбертово пространство W и линейную непрерывную функцию $\xi = (u, \xi)$ от $u \in W$ с векторными значениями $(u, \xi) \in \mathbf{H}$ в пространстве \mathbf{H} случайных величин, зависящих от элементарного исхода $\omega \in \Omega$. Эту зависимость для случайных величин (u, ξ) укажем записью

$$(u, \xi) = (u, \xi)_{\omega}, \quad \omega \in \Omega.$$

При каждом исходе $\omega \in \Omega$ мы имеем реализацию $(u, \xi)_{\omega}$ случайных величии (u, ξ) , а в их совокупности — реализацию

$$\xi_{\omega} = (u, \xi)_{\omega}, \quad u \in W,$$

случайной функции $\xi = (u, \xi)$, $u \in W$. Спрашивается, можно ли выбрать векторную функцию $\xi = (u, \xi)$ в Н так, чтобы ее реализации $\xi_{\omega} = (u, \xi)_{\omega}$ были линейны и непрерывны по $u \in W$ для всех (или почти всех)

 $\omega \in \Omega$? Понятно, что речь здесь идет о вложении реаливаций ξ_{ω} в сопряженное пространство $X = W^*$, при котором

$$\xi_{\omega} = (u, \xi_{\omega}), u \in W,$$

 $c \ \xi_{\omega} \subseteq X$.

Отметим, что в нашей интерпретации случайной функции $\xi = (u, \xi)$ как векторной функции со значениями в Н мы отождествляем ее со всеми эквивалентными случайными функциями $\tilde{\xi} = (u, \tilde{\xi})$, при каждом отдельном $u \in W$ имеющими значения $(u, \xi) = (u, \xi)$ в $\mathbf{H} - \text{пояс-}$ ним: эти значения как случайные величины равны с вероятностью 1.

$$(u, \widetilde{\xi})_{\omega} = (u, \xi)_{\omega}$$

для почти всех $\omega \in \Omega$, что оставляет возможность «подправить» зависимость значений функции $\xi = (u, \xi)$ от случая для каких-то «плохих» исходов ю, в совокупности имеющих вероятность 0 (и такая поправка может внести радикальные изменения в поведение реализаций!). Говоря о реализациях случайной функции $\xi = (u, \xi)$ с тем или иным свойством, мы будем иметь в виду возможность выбора эквивалентной случайной функции с такими реализациями.

Указывая на связь с предложенной в (1.2)—(1.7) схемой, используем ф для обозпачения элементов гильбертова пространства W. Рассмотрим вопрос о реализациях $\xi_{\omega} \in X = W^*$ случайной функции $\xi = (\varphi, \xi)$ при дополнительно данном условии ее непрерывности относительно нормы $\|\phi\|_{W_0}$ в каком-либо гильбертовом про-

странстве $W_0 = W$. Данное здесь вложение

$$W \subseteq W_0 \tag{3.2}$$

подразумевает, что норма $\| \varphi \|_{W}$ не слабее $\| \varphi \|_{W_{\bullet}}$.

Нам удобно будет использовать для элементов $x \in X$ = = W* представление Рисса

$$x = (\varphi, x) = \langle \varphi, u \rangle_w, \quad \varphi \in W,$$

которое задает x = Bu с помощью $u \in W$ и позволяет отождествить W^* с гильбертовым пространством X = BW,

$$\langle Bu, Bv \rangle_{x} = \langle \overline{u, v} \rangle_{w}.$$

Характеризуя векторную функцию $\xi = (\varphi, \xi), \varphi \in W$, со значениями в Н ее непрерывностью относительно нормы $\| \phi \|_{W_0}$, мы палагаем условие

68

$$E \mid (\varphi, \xi) \mid^2 \leq C \mid \varphi \parallel_{W_0}^2, \quad \varphi \in W.$$

Назовем (3.2) вложением Гильберта — Шмидта, если для ортонормированного базиса $\{\varphi_k\}$ в W

$$\sum_{k} \| q_k \|_{W_0}^2 < \infty. \tag{3.3}$$

$$y_{CAOBUU}, y_{TO} W \subseteq W_0 \text{ ecth become has}$$

Теорема. При условии, что $W \subseteq W_0$ есть вложение Гильберта — Шмидта, реализации $\xi_{\omega} = (\varphi, \xi)_{\omega} = (\varphi, \xi_{\omega})$ являются линейными непрерывными функциями от $\varphi \in W$,

$$\xi_{\omega} \subseteq X = W^*. \tag{3.4}$$

Доказательство. Исходя из условия (3.3), положим $\xi_k = (\phi_k, \xi)$. Для случайных величин $\xi_k = \xi_k(\omega)$, $\omega \in \Omega$, мы имеем

$$E \sum_{h} |\xi_{h}(\omega)|^{2} - \sum_{h} E |(\varphi_{h}, \xi)|^{2} \leqslant C \sum_{h} \|\varphi_{h}\|_{W_{0}}^{2} < \infty,$$

что дает $\sum_{k} |\xi_{k}(\omega)|^{2} < \infty$ при почти всех $\omega \in \Omega$. Возьмем эквивалентные случайные величины $\widetilde{\xi}_{k} = \xi_{k}(\omega)$ так, чтобы указанный ряд сходился при всех $\omega \in \Omega$. Исполь-

бы указанный ряд сходился при всех $\omega \in \Omega$. Используя в $X = W^*$ сопряженный ортонормированный базис $\{x_k\}$ с $x_k = B\phi_k$, введем

$$\widetilde{\xi}_{\omega} = \sum_{k} \widetilde{\xi}_{k} (\omega) x_{k} \in X.$$

При каждом $\omega \in \Omega$ мы имеем $\widetilde{\xi}_{\omega} = (\varphi, \widetilde{\xi}_{\omega})$. $\varphi \in W$, как реализацию в X случайной функции $\widetilde{\xi} = (\varphi, \widetilde{\xi})$, $\varphi \in W$, со значениями

 $(\varphi, \widetilde{\xi}) := \sum_{k} \widetilde{\xi}_{k} \cdot (\varphi, x_{k}) = \sum_{k} (\varphi, x_{k}) (\varphi_{k}, \xi) = \left(\sum_{k} (\varphi, x_{k}) \varphi_{k}, \xi \right) = (\varphi, \xi)$

- здесь используются разложение

$$\varphi = \sum_{k} \langle \varphi, \varphi_{k} \rangle_{W} \varphi_{k} = \sum_{k} (\varphi, x_{k}) \varphi_{k}$$

по ортонормированному базису $\{\phi_{k}\}$ и непрерывность функции $\xi=(\phi,\ \xi)$ по $\phi\in W$ в Н. Имея $\widetilde{\xi}=(\phi,\ \widetilde{\xi})$ как

случайную функцию, эквивалентную $\xi = (\phi, \ \xi)$, видим, что все ее реализации дают нам элементы $\widetilde{\xi}_{\omega} \in X = W^*$. \square Условие (3.3) того, что $W \subseteq W_0$ есть вложение Гиль-

берта — Шмидта, можно выразить в разной форме. Само вложение $W \subseteq W_0$ означает, что элементы $\hat{\varphi} \subseteq W$ одновременно представляют элементы $\phi \in W_0$ с нормой $\|\hat{\phi}\|_{W_0} \leqslant c \|\phi\|_W$, и, таким образом, скалярное произведение $\langle u,v\rangle_{W_0}$ непрерывно по u,v в гильбертовом пространстве W, допуская известное представление

$$\langle u, v \rangle_{W_0} = \langle u, Rv \rangle_W, \quad u, v \in W,$$
 (3.5)

с линейным ограниченным оператором *R* ≥ 0 в *W*. Взяв квалратный корень $Q = R^{1/2}$, можно переписать условие (3.3) в виде

$$\sum_{k} \|Qq_k\|_W^2 = \sum_{k} \langle q_k, Rq_k \rangle_W < \infty \tag{3.6}$$

 напомним, что {φ_k} есть ортонормированный базис в W. Условие (3.6) определяет $Q = R^{1/2}$ как оператор $\Gamma u Ab$ берта - III.мидта, а R — как ядерный оператор в W.

Рассматривая случайную функцию $\xi = (\phi, \xi)$ с непрерывными по $\phi \in W$ значениями $(\phi, \xi) \in H$, в качестве $W_0 \cong W$ всегда можно взять собственное для ξ гильбертово пространство $W_0 = [W]$, получающееся пополнением исходного W относительно скалярного произведения, определяемого корреляционной формой

$$\langle u, v \rangle_{W_0} = E(u, \xi)(\overline{v, \xi}), \quad u, v \in W.$$

— для нее мы имеем представление (3.5), в котором соответствующий R называют корреляционным оператором в W. Перефразируя доказанную теорему о включении (3.4), можно сформулировать следующее предложение.

Теорема. При условии ядерности корреляционного оператора в W для реализации случайной функции $\xi =$

 $=(\dot{\varphi}, \xi), \varphi \in W,$ справедливо включение (3.4). \Box Рассматривая в нашей схеме (1.2)—(1.7) случайную

функцию $\xi = (x, \xi)$ обобщенного переменного $x \in X$, где $\hat{X} = W^*$ — отвечающее данному $W = [\mathcal{D}]$ пространство пробных обобщенных функций, можно поставить вопрос о припадлежности реализаций

$$\xi_{\omega} \in W_0 \tag{3.7}$$

сопряженному пространству $W_{\scriptscriptstyle 0} = X_{\scriptscriptstyle 0}^*$ для того или иного

гильбертова $X_0 \subseteq X$. (Иока здесь в сравнении с рассмотренным выше общим случаем лишь переставлены местами W_0 и X.)

Теорема. Включение (3.7) имеет место для любого W, допускающего вложение Гильберта — Шмидта

$$W \subseteq W_0. \tag{3.8}$$

Это следует из уже доказанного ранее (при замене W_0 на X) с помощью следующей модификации общего условия (3.3) того, что $W \subseteq W_0$ есть вложение Гильберта — Шмидта.

Именно, взяв произвольный ортонормированный базис $\{x_j\}$ в гильбертовом пространстве $X_0=W_0^*$, это условие можно выразить в форме

$$\sum_{h,j} |(\varphi_h, x_j)|^2 < \infty. \tag{3.3}$$

Действительно, используя сопряженный ортонормированный базис $\{u_i\}$ в W_0 , мы имеем

$$\|\varphi\|_{W_0}^2 = \sum_j |\langle \varphi, u_j \rangle_{W_0}|^2 = \sum_j |\langle \varphi, x_j \rangle|^2$$

для любого $\varphi \in W_0$, и в условии (3.3) для ортонормированного базиса $\{\varphi_h\}$ в гильбертовом пространстве $W \subseteq W_0$

$$\sum_{k} \| \varphi_{k} \|_{W_{0}}^{2} = \sum_{k,j} | (\varphi_{k}, x_{j}) |^{2} < \infty.$$

При вложении $W \subseteq W_0$ мы имеем одновременио вложение

$$X_0 = W_0^* \subseteq W^* = X$$

сопряженных пространств. При этом $W=X^*$ является сопряженным к гильбертову $X=W^*$ п $\{\phi_k\}$ является ортонормированным базисом в X^* . Согласно этому, в (3.3)' мы имеем также условие того, что $W_0^* \subseteq W^*$ есть вложение Гильберта — Шмидта. Получается следующий результат:

вложение Гильберта — Шмидта $W \subseteq W_0$ равносильно такого же типа вложению $W_0^* \subseteq W^*$ сопряженных пространств.

Таким образом, условие (3.8) равносильно тому, что $X_0 \subseteq X$ есть вложение Гильберта — Шмидта, а это, как мы уже знаем, дает для $W_0 = X_0^*$ включение (3.7). \square

3° Гауссовские случайные функции. Гауссовская случайная функция $\xi = (\varphi, \xi)$, $\varphi \in W$, на гильбертовом пространстве W — это линейная непрерывная функция с действительными значениями $(\varphi, \xi) \in \mathbf{H}$, имеющими гауссовское распределение вероятностей для всех φ . Напомним, что при нулевом среднем $E(\varphi, \xi) = 0$ это есть распределение с плотностью вероятности

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-x^2/(2\sigma^2)}. \quad -\infty < x < \infty.$$

где $\sigma^2 = E(\varphi, \xi)^2$.

Допустим, что реализации $\xi_{\omega} = (\varphi, \xi_{\omega}), \varphi \in W$, такой функции можно охарактеризовать тем свойством. что с положительной вероятностью $\xi_{\omega} \in X$ входят в сопряженное пространство $X = W^*$. Взяв ортонормированный базис $\{\varphi_k\}$ в W, получим, что с положительной вероятностью $(\varphi_k, \xi_{\omega}) \to 0$ при $k \to \infty$, а это для гауссовских случайных величин влечет среднеквадратичную сходимость.

$$E|(\varphi_b, \xi)|^2 = \langle \varphi_b, R\varphi_b \rangle \to 0.$$

указывающую на компактность корреляционного оператора R. Взяв ортонормированный базис $\{\varphi_k\}$ из его собственных значений, для соответственно независимых гауссовских величин $(\varphi_k, \xi_\omega), k=1, 2, \ldots$ и сходящегося (с положительной вероятностью) ряда

$$\sum_{k} |\left(\varphi_{k}, \xi_{\omega}\right)|^{2} = \|\xi_{\omega}\|_{X}^{2} < \infty.$$

получим вытекающую отсюда среднеквадратичную сходимость

$$\sum_{h} E(\varphi_{h}, \xi)^{2} = \sum_{h} \langle \varphi_{h}, R \varphi_{h} \rangle_{W} < \infty,$$

и мы видим, что R — я дер и ы й онератор в W. Ранее для произвольной случайной функции $\xi \in (\mathfrak{q}, \xi)$.

оператор R в W является ядерным.

 $\phi \in W$, мы установили, что условие ядерности ее корреляционного оператора R в W дает $\xi_{\omega} \in X = W^*$ при всех $\omega \in \Omega$ (точпее, дает возможность выбора эквивалентной случайной функции с реализациями $\xi_{\omega} \in X = W^*$). В итоге для реализаций гауссовской случайной функции $\xi = (\phi, \xi)$, $\phi \in W$, включение $\xi_{\omega} \in X = W^*$ имеет место тогда и только тогда, когда ее корреляционный

Рассматривая гауссовскую случайную функцию $\xi \in (\phi, \xi)$, $\phi \in W_0$, на гильбертовом пространстве W_0 , где она является невырожденной со среднеквадратичными значениями

$$E(\varphi, \xi)^2 \times \|\varphi\|_{W_0}^2.$$
 (3.9)

па основании полученных результатов можно сформулировать следующее предложение.

Теорема. Вложение Гильберта — Шмидта $W \subseteq W_0$ является необходимым и достаточным условием включения реализаций $\xi_{\omega} \subseteq X = W^*$ гауссовской невырожденной функции $\xi \subseteq (\varphi, \xi), \xi \subseteq W$.

Это указывает на пеулучшаемость общих включений

(3.4), (3.7).

4° Вложения Гильберта — Шмидта. Рассмотрим соболевские пространства $\mathring{W}_{2}^{n}(T), n=0,\pm 1,\ldots$ в области $T\subseteq R^{d}$. Напомпим, что $\mathring{W}_{2}^{n}(T)=[\mathscr{D}]$ при $n\geqslant 0$ есть замыкание пространства $\mathscr{D}=C_{0}^{\infty}(T)$ по норме

$$\| \, \varphi \, \|_n^2 = \sum_{|h| \leqslant n} \! \left\| \, \partial^h \varphi \, \right\|_{\boldsymbol{\mathscr{L}}_2}^{\boldsymbol{\circ}}.$$

а соответствующее $\mathring{W}_{2}^{-n}(T)=\mathring{W}_{2}^{n}(T)^{*}$ является сопряженным к $\mathring{W}_{2}^{n}(T)$. Нам удобнее будет использовать эквивалентную норму

$$\|\varphi\|_n^2 = (\varphi, \mathscr{P}\varphi), \qquad \mathscr{P} = (1-\Delta)^n,$$

где 🛆 — оператор Лапласа.

 $K_{a\kappa}$ мы знаем, при всех $n \geqslant m$ имеет место вложение

$$\mathring{W}_{2}^{n}(T) \subseteq \mathring{W}_{2}^{m}(T). \tag{3.10}$$

Теорема. При

$$n - m > d/2 \tag{3.11}$$

для любой ограниченной области $T \subseteq R^t$ в (3.10) имеет место вложение Γ ильберта — Шмидта.

Доказательство. Ограниченная область T содержится в некотором кубе $T_0 = [-\pi a, \ \pi a]^d$, и мы воспользуемся в пространстве $\mathcal{L}_2(T_0)$ разложением

$$\varphi(t) = \sum_{h} \widetilde{\varphi}_{h} e_{h}(t)$$
 (3.12)

по ортонормированному базису из функций

$$e_h(t) = \frac{1}{(2\pi a)^{d/2}} e^{i\frac{h}{a}t},$$

где $k = (k_1, \ldots, k_d)$ пробегает всю целочисленную d-мерную решетку. Не ограничивая общности доказательства, будем считать a = 1. Введем операторы \mathcal{I}^n как

$$\mathcal{J}^{n}\varphi(t) = \sum_{k} (1 + |k|^{2})^{n/2} \widetilde{\varphi}_{k} e_{k}(t), \qquad (3.13)$$

определенные на $\phi \in \mathcal{L}_2(T_0)$, для которых в их разложении (3.12)

$$\sum_{k} (1+|k|^2)^n |\widetilde{\varphi}_k|^2 < \infty.$$

Очевидно, что все функции $\varphi \in \mathcal{D} = C_0^\infty(T)$ входят в область определения оператора \mathcal{I}^n при каждом n, поскольку для них коэффициенты

$$\widetilde{\varphi}_h = \frac{1}{(2\pi)^{d/2}} \int \varphi(t) e^{-iht} dt$$

стремятся к 0 при $|k| \to \infty$ быстрее, чем $(1+|k|^2)^{-p}$ с любым $p \ge 0$; отметим, что при $n=0,1,\ldots$

$$(1-\Delta)^n \varphi(t) = \sum_k (1+|k|^2)^n \widetilde{\varphi}_k e_k(t)$$

И

$$\|\varphi\|_{n}^{2} = \|\mathcal{J}^{n}\varphi\|_{\mathscr{L}_{2}}^{2}.$$
 (3.14)

Рассмотрим оператор $Q=\mathcal{I}^{-p}$, p>d/2. Очевидно, что есть ограниченный симметрический положительный оператор в $\mathcal{L}_2(T_0)$, имеющий элементы ортонормированного базиса $\{e_k\}$ своими собственными функциями с соответствующими собственными значениями $(1+|k|^2)^{-p/2}$, для которого

$$\sum_{k} \|Qe_{k}\|^{2} = \sum_{k} (1 + |k|^{2})^{-p} < \infty$$

при p > d/2. Таким образом, Q есть оператор Гильберта — Шмидта в $\mathcal{L}_2(T_0)$, и этим мы воспользуемся.

Обратимся к вложению (3.10) с произвольным $m \ge 0$ и n = m + p, p > d/2. Согласно (3.14), ортонормированному базису $\{\phi_i\}$ в $\mathring{W}_2^n(T)$ из функций $\phi_i \in \mathcal{D}$ в $\mathcal{L}_2(T_0)$ отвечает ортонормированная система $\{\mathcal{F}^n\phi_i\}$, применяя к

которой оператор Гильберта — Шмидта $Q=\mathcal{I}^{-p}$, получаем

$$\sum_{j} \|Q(\mathcal{I}^{n}\varphi_{j})\|_{\mathcal{Z}_{2}}^{2} = \sum_{j} \|\mathcal{I}^{m}\varphi_{j}\|_{\mathcal{Z}_{2}}^{2} = \sum_{j} \|\varphi_{j}\|_{m}^{2} < \infty.$$

а это и доказывает то, что $\mathring{W}_{2}^{n}(T) \subseteq \mathring{W}_{2}^{m}(T)$ есть вложение Гильберта — Шмидта. Применяя полученный результат к сопряженным пространствам, убеждаемся в том, что $\mathring{W}_{2}^{-m}(T) \subseteq \mathring{W}_{2}^{-n}(T)$ есть вложение Гильберта — Шмидта при любых -m-(-n)=p>d/2.

Рассмотрим тенерь оставшиеся еще n=-m+p (с m, n>0 и p>d/2) и установим, что $\mathring{W}_{2}^{n}(T)\subseteq\mathring{W}_{2}^{-m}(T)$ есть вложение Гильберта — Шмидта. Для элементов x= $=\phi_{j}\in\mathcal{D}$ ортонормированного базиса $\{\phi_{j}\}$ в $\mathring{W}_{2}^{n}(T)$. рассматриваемых в $X=\mathring{W}_{2}^{-m}(T)$, мы имеем

$$\begin{aligned} \|x\|_{-m} &= \sup_{\|\phi\|_{m} \le 1} |(\phi, x)| = \sup_{\|\mathcal{Y}^{m}_{\phi}\|_{\mathcal{Z}_{2}} \le 1} |(\mathcal{T}^{m}_{\phi}, Q\mathcal{T}^{n}_{x})| \le \\ &\leq \|Q\mathcal{T}^{n}_{x}\|_{\mathcal{Z}_{2}}, \end{aligned}$$

откуда с использованием ортонормированной системы $\{\mathcal{F}^n\phi_i\}$ в $\mathcal{L}_2(T_0)$ и оператора Гильберта — Шмидта Q получаем

$$\sum_{j} \| \varphi_{j} \|_{-m}^{2} \leq \sum_{j} \| Q \mathcal{J}^{n} \varphi_{j} \|_{\mathcal{Z}_{2}}^{2} < \infty.$$

что и требовалось доказать *).

В дополнение к доказанной теореме с условием (3.11) отметим еще следующее.

В пространстве $\mathscr{L}_2(T_0)$ операторы \mathscr{I}^m определены формулой (3.13) на $\mathfrak{q} \in \mathscr{D} = C_0^\infty(T)$ при всех действительных m, ис их помощью для каждого $m \ge 0$ равенством (3.14) можно ввести норму $\|\mathfrak{q}\|_w = \|\mathfrak{q}\|_m$, отвечающую в общей схеме (1.2)—(1.7) положительной билинейной форме

$$\langle u, v \rangle_W = \langle \mathcal{I}^m u, \mathcal{I}^m v \rangle_{\mathcal{Z}_{\mathfrak{d}}}, \quad u, v \in \mathcal{D}.$$

^{*)} Условие (3.11) доказанной теоремы нельзя улучшить, что, в частности, следует из расходимости ряда $\sum_k (1+|k|^2)^{-p} = \infty$ при $p=n+m\leqslant d/2$.

и порождающую соответствующее пространство $W = [\mathcal{D}]$, которое обозначим как $W = \mathring{W}_2^m(T)$; в согласии с этим обозначим $X = W^*$ как $X = \mathring{W}_2^{-m}(T)$. Очевидно, что $\|\phi\|_m \geqslant \|\phi\|_{\mathcal{D}_2}$ при любом $m \geqslant 0$ и имеет место невырожденное вложение $\mathring{W}_2^m(T) \subseteq \mathcal{L}_2(T)$ (поясним: все $\phi \in \mathring{W}_2^m(T)$ входят в $\mathcal{L}_2(T) \subseteq \mathcal{L}_2(T_0)$, и при $\|\phi\|_{\mathcal{L}_2} = 0$ мы имеем $\phi = 0$, $\mathcal{J}^m \phi = 0$ в $\mathcal{L}_2(T_0)$, так что $\|\phi\|_m = \|\mathcal{J}^m \phi\|_{\mathcal{L}_2} = 0$). Согласно этому, $X = \mathring{W}_2^m(T)$ есть пространство типа W, $X = [\mathcal{D}] - \text{см.}$ (2.2), (2.3). Данное нами доказательство того, что при условии (3.11) мы имеем в (3.10) вложение Гильберта — Шмидта, распространяется на все действительные n, m с n — m = p > d/2. \square

Выделим здесь специально случай

$$p > d/2$$
,

когда мы в ограниченной области $T \subseteq R^d$ имеем вложение Гильберта — Шмидта

$$\mathring{W}_{2}^{p}(T) \subseteq \mathscr{L}_{2}(T).$$

Дополнительно здесь можно указать справедливое для любой области $T \subseteq R^d$ вложение

$$\mathring{W}_{2}^{p}(T) \subseteq C(T) \tag{3.15}$$

в пространство пепрерывных функций C(T), которое легко установить, например, используя для функций $u \in \mathring{W}_{2}^{p}(T) \subseteq \mathring{W}_{2}^{p}(R^{d})$ преобразование Фурье $\widetilde{u} \in \mathscr{L}_{2,F}$ из известного нам пространства $\mathscr{L}_{2,F}$ с весовой функцией

$$F(\lambda) \times 1 + |\lambda|^{2p}, \quad \lambda \in \mathbb{R}^d.$$

В самом деле, в силу интегрируемости функции 1/F получается, что

$$\int |\widetilde{u}(\lambda)| d\lambda \leqslant \left(\int |\widetilde{u}(\lambda)|^2 F(\lambda) d\lambda\right)^{1/2} \left(\int \frac{1}{F(\lambda)} d\lambda < \infty\right)^{1/2} =$$

$$= C \|\widetilde{u}\|_{\mathscr{L}_{2,F}},$$

и, следовательно, сама функция $u \in \mathring{W}_{2}^{p}(T)$, представи-

мая обратным преобразованием Фурье

$$u = u(t) = \frac{1}{(2\pi)^{d/2}} \int e^{i\lambda t} \widetilde{u}(\lambda) d\lambda, \quad t \in T,$$

является непрерывной по переменному t, причем

$$\sup_{t} |u(t)| \leqslant \frac{1}{(2\pi)^{d/2}} \int |\widetilde{u}(\lambda)| d\lambda \leqslant C \|\widetilde{u}\|_{\mathscr{L}_{2,F}} \leqslant C \|u\|_{p}.$$

В соответствии с этим с л у ч а й н ы е $u \in \mathbf{W} = \mathring{\mathbf{W}}_2^p(T)$ также представимы как непрерывные функции u = u(t), $t \in T$, в гильбертовом пространстве $\mathbf{H} = \mathscr{L}_2(\Omega)$ случайных величин на вероятностном Ω , поскольку пространство пробиых обобщенных функций $X = \mathring{W}_2^{-p}(T)$ содержит всевозможные дельта-функции $x = \delta_t$ с $\widetilde{\delta}_t = e^{i\lambda t} \in \mathscr{L}_{2,F}$, которые в совокупности образуют полную систему в X, позволяя идентифицировать $u \in \mathbf{W}$ как «обычные» функции

$$u = u(t) = (x, u), \quad x = \delta_t,$$

переменного $t \subseteq T$; при этом

$$E \mid u(t + h) - u(t) \mid^2 \leqslant C \parallel \widetilde{\delta}_{t+h} - \widetilde{\delta}_t \parallel^2_{\mathcal{Z}_{2,1/F}} \leqslant$$

$$\leq C \int |e^{i\lambda h} - 1|^2 \frac{1}{F(\lambda)} d\lambda$$
. \Box

5° Случайные обобщенные функции и соболевские пространства. Рассматривая случайную обобщенную функцию

$$\xi = (\varphi, \xi), \quad \varphi \in \mathcal{D} = C_0^{\infty}(T),$$

как векторную обобщенную функцию со значениями в гильбертовом пространстве $\mathbf{H}=\mathscr{L}_2(\Omega)$ случайных величии, ее можно охарактеризовать тем свойством, что в каждой ограниченной области T_{loc} с замыканием $\overline{T}_{\text{loc}} = T$ она непрерывна по $\mathbf{q} \in C_0^\infty(T_{\text{loc}})$ относительно нормы $\|\mathbf{q}\|_p$ соболевского пространства $\mathring{W}_2^p(T_{\text{loc}})$ — с зависящим от области T_{loc} показателем p. Для скалярных функций это свойство было определено как локальная принадлежность к сопряженным соболевским пространствам $\mathring{W}_2^{-p}(T_{\text{loc}})$ (см. (3.1), (3.1)').

Рассматривая случайную обобщенную функцию ξ с точностью до эквивалентности и имея в виду возмож-

ность выбора соответствующих реализаций

$$\xi_{\omega} = (q, \xi_{\omega}), \quad q \in C_0^{\infty}(T),$$
 (3.16)

отвечающих случайным исходам $\omega \subseteq \Omega$, установим следующее важное свойство.

Теорема. Реализации случайной обобщенной функции локально принадлежат соболевским пространствам:

$$\xi_{\omega} \stackrel{\text{loc}}{\rightleftharpoons} \mathring{W}_{2}^{-p}(T_{\text{loc}}).$$

Это заключает в себе утверждение о том, что в (3.16) мы имеем не просто какую-то коллекцию данных (φ , ξ_{ω}), $\varphi \in C_0^{\infty}(T)$, а такую, что при каждом $\omega \in \Omega$ (3.16) дает нам обобщенную функцию $\xi_{\omega} \in \mathcal{D}^*$.

При доказательстве мы используем нашу схему (1.2)-(1.7) для $T_{\text{loc}}=T_1,\ T_2,\ \dots$ с монотонно расширяющимися областями T_n , в сумме дающими $\bigcup T_n=T$.

Как мы знаем, непрерывность $\xi = (\varphi, \ \xi)$ по $\varphi \in C_0^\infty(T_n)$ в $W_n = \mathring{W}_2^p(T_n)$ позволяет представить ξ в области T_n как

$$(\varphi, \xi) = (\varphi, \xi_n), \quad \varphi \in C_0^{\infty}(T_n), \quad (3.17)$$

со случайным элементом

$$\xi_n \in X_n = \mathring{W}_2^{-p_n}(T_n), \quad p_n > p + d/2,$$

— см. (3.4), (3.11). Уточним, случайный элемент $\xi_n = \xi_n(\omega) \in X_n$ при всех $\omega \in \Omega$, а равенство (3.17) для любого $\varphi \in C_0^\infty(T_n)$ выполняется с вероятностью 1 (при почти всех $\omega \in \Omega$), какова бы ни была рассматриваемая модификация случайной обобщенной функции ξ . Обе части равенства (3.17) как случайные обобщенные функции в области T_n непрерывны по φ в $\mathring{W}_2^{p_n}(T_n)$, и это равенство распространяется на все $\varphi \in \mathring{W}_2^{p_n}(T_n) = [C_0^\infty(T_n)]$. Возьмем монотонно возрастающую последовательность p_n . Взяв без изменения начальный элемент $\xi_1 = \widetilde{\xi}_1$ и определив надлежащие $\widetilde{\xi}_m \in X_m$, $m \leqslant n$, несколько «подправим» последующие $\xi_{n+1} \in X_{n+1}$, чтобы получить нужные нам $\widetilde{\xi}_{n+1}$. Для этого используем вложение

$$X_n = \mathring{W}_2^{-p_n}(T_n) \subseteq \mathring{W}_2^{-p_{n+1}}(T_n),$$

рассматривая $\mathring{W}_{2}^{-p_{n+1}}(T_{n}) = \mathring{X}(T_{n})$ как подпространство в $X_{n+1} = \mathring{W}_{2}^{-p_{n+1}}(T_{n+1})$, ортогональное аннулятору $Y_{n} \cong X_{n+1}$ при всех $\varphi \in C_{0}^{\infty}(T_{n})$ (согласно общему представлению (1.9) мы используем здесь $\mathring{X}(T_{n+1}) = B\mathring{W}(T_{n+1})$ с $\mathring{W}(T_{n+1}) = \mathring{W}_{2}^{p_{n+1}}(T_{n+1}) \cong \mathring{W}_{2}^{p_{n+1}}(T_{n}) = \mathring{W}(T_{n})$ и $\mathring{X}(T_{n}) = B\mathring{W}(T_{n})$ как подпространство в $\mathring{X}(T_{n+1}) = \mathring{W}_{2}^{-p_{n+1}}(T_{n+1})$). Возьмем ортогональное разложение $\xi_{n+1} = \mathring{\xi}_{n} + \eta_{n}$ в X_{n+1} с компонентами $\mathring{\xi}_{n} \in \mathring{X}(T_{n})$ и $\eta_{n} \in Y_{n}$, для которых при любом $Y_{n} \in \mathring{W}(T_{n}) = [C_{0}^{\infty}(T_{n})]$ мы имеем $Y_{n} = 0$ и с вероятностью 1

$$(\varphi, \xi_n) = (\varphi, \xi_{n+1}) = (\varphi, \xi).$$

Используя определенный на предшествующем шаге элемент $\widetilde{\xi}_n \in X_n \subseteq X(T_n)$, для которого при любом $\mathfrak{q} \in \mathring{W}(T_n) \subseteq \mathring{W}^{-p_n}(T_n)$ с вероятностью 1

$$(\varphi, \widetilde{\xi}_n) = (\varphi, \xi),$$

ваменим $\hat{\xi}_n$ на $\hat{\xi}_n$ и положим

$$\widetilde{\xi}_{n+1} = \widetilde{\xi}_n + \eta_n$$
.

Для любого $\phi \in \mathring{W}(T_{n+1})$ в его разложении $\phi = \mathring{\phi} + \psi$ на компоненты $\mathring{\phi} \in \mathring{W}(T_n)$ и $\psi \perp \mathring{W}(T_n)$ в $\mathring{W}(T_{n+1}) \supseteq \mathring{W}(T_n)$ получим с вероятностью 1

$$(\mathring{\varphi}, \widetilde{\xi}_{n+1}) = (\mathring{\varphi}, \widetilde{\xi}_n) = (\mathring{\varphi}, \xi)$$

И

$$(\psi, \widetilde{\xi}_{n+1}) = (\psi, \eta_n) = (\psi, \xi)$$

— поясним; $\overset{\circ}{X}(T_n) \subseteq X_{n+1}$ есть аннулятор ортогонального дополнения к подпространству $\overset{\circ}{W}(T_n)$ в $\overset{\circ}{W}(T_{n+1})$, так что в итоге с вероятностью 1

$$(\varphi, \widetilde{\xi}_{n+1}) = (\varphi, \xi).$$

В нашей конструкции мы последовательно имеем

$$\widetilde{\xi}_1 = \xi_1, \quad \widetilde{\xi}_{n+1} = \widetilde{\xi}_n + \eta_n \in \mathring{W}_2^{-p_{n+1}}(T_{n+1})$$

с $(\varphi, \eta_n) = 0$ при всех $\varphi \in C_0^\infty(T_n)$, так что ξ можно

представить формально «слабо сходящимся» рядом

$$\mathfrak{F} = \xi_1 + \sum_n \eta_n$$

для которого при каждом $\mathfrak{q} \in C_0^\infty(T)$ с вероятностью 1

$$(\varphi, \widetilde{\xi}) = (\varphi, \widetilde{\xi}_n) = (\varphi, \widetilde{\xi}),$$
 (3.18)

где n нодчинено лишь условию $T_n \cong \operatorname{supp} \varphi$. Взяв равенство (3.18) за определение предлагаемой с помощью $\widetilde{\xi}$ модификации случайной обобщенной функции ξ , видим, что ее реализации локально принадлежат соболевским пространствам $\mathring{W}_2^{-p_n}(T_n)$, $n=1,2,\ldots$ Теорема доказана. \square

§ 4. Граничные значения обобщенных функций (случай соболевских пространств)

1° Некоторые характерные свойства соболевских пространств. Допустим, что мы имеем дело с обобщенной функцией $u=(\varphi,u),\ \varphi\in \mathscr{D}=C_0^\infty(T),\$ в области $T\subseteq R^d$ и нас интересует ее граничное поведение вблизи границы $\Gamma=\partial S$ подобласти $S\subseteq T.$ В общей форме трудно даже поставить вопрос, отражающий этот предположительный интерес, однако в случае непрерывности $u=(\varphi,u)$ по норме $\|\varphi\|$ в том или ином пространстве пробных функций $X=[\mathscr{D}]\subseteq \mathscr{D}^*$ определенной характеристикой граничного поведения $u=(\varphi,u)$ может служить предел

$$\lim (\varphi, u) = (x, u) \tag{4.1}$$

при сходимости пробных $\varphi \in \mathcal{D}$ к граничным функциям $x \in X$ с носителями $\sup x \subseteq \Gamma$; дополнительно здесь можно требовать от пробных $\varphi \in \mathcal{D}$ быть так или иначе локализованными вблизи границы Γ , скажем $\sup \varphi \subseteq S$. С этой точки эрения мы рассмотрим граничные свойства обобщенных функций $u \in W$ для соболевских пространств

$$W = \mathring{W}_{2}^{p}(T), \quad X = \mathring{W}_{2}^{-p}(T),$$

точнее, речь будет идти о граничных свойствах функций $u \in W(S) = W_2^p(S)$ в области S на границе $\Gamma = \partial S$. Напомним, что $W(S) = W_2^p(S)$ у нас означает пространство, получающееся как сужение $W = \mathring{W}_2^p(T)$ в области $S \subseteq T$ (см. (2.33)). \square

Начнем со случая, когда \mathring{W}_2^p характеризуется целым p>0. Напомним, что $\mathring{W}_2^p(T)=[\mathcal{D}]$ есть замыкание $\mathcal{D}=C_0^\infty(T)$ отпосительно нормы

$$\|u\|_p^2 = \sum_{|u| \le p} \|\hat{\sigma}^b u\|_{\mathscr{L}_2(T)}^2$$

— см. (2.8).

Обратимся к пространству $C_0^p(T)$ всех функций u=u(t) переменного $t \in T$ с компактным и носителями $\sup u \subset T$, имеющих непрерывные производные $\partial^n u$, $|k| \leq p$; при рассмотрении таких функций в $\mathring{W}_2^p(R^d)$ мы имеем

$$C_0^p(T) \subseteq \mathring{W}_2^p(T)$$

с замыканием

$$\left[C_0^p(T)\right] = \mathring{W}_2^p(T).$$

Используя это представление для $\mathring{W}_{2}^{p}(T)$, легко установить, что соболевские пространства типа \mathring{W}_{2}^{p} инвариантны относительно р-гладких невырожденных преобразований переменного $t=\tau(\widehat{t})$, покоординатно задаваемых функциями

$$t_i = \tau_i(\hat{t}_1, \ldots, \hat{t}_d), \qquad i = 1, \ldots, d,$$
 (4.2)

с ограниченными производными до порядка p и невырожденным якобианом $|\partial \tau| \ge c > 0$. Действительно, при $t = \tau(\widehat{t})$ функции $u = u(t) \in C_0^p(T)$ переходят в функции $\widehat{u} = u(\tau(\widehat{t})) \in C_0^p(\widehat{T}) \subseteq \mathring{W}_2^p(\widehat{T})$ в соответствующей области $\widehat{T} \subseteq R^d$, причем, как легко проверить, имеет место эквивалентность норм $\|\widehat{u}\|_p \times \|u\|_p$, что в итоге для всех функций $u \in \mathring{W}_2^p(T) = [C_2^p(T)]$ дает $\widehat{u} \in \mathring{W}_2^p(\widehat{T}) = [C_0^p(\widehat{T})]$.

Сказанное здесь переносится и на анизотропные пространства $\mathring{W}_{2}^{p}(T)$, характеризуемые мультииндексом $p=(p_{1},\ldots,p_{n})$, если иметь в виду преобразования, сохраняющие однородные группы переменных $t_{j}=\tau_{j}(\widehat{t_{j}})$, $j=1,\ldots,n-$ см. (2.8)'. \square

Рассматривая $\mathring{W}_2^p(T) \subseteq \mathring{W}_2^p(R^d)$ как подпространство в $\mathring{W}_2^p(R^d)$, обратимся к случаю $T = R^d$.

При $|k| \leq p-1$ каждая функция $f = \partial^k u$ и ее обобщенная производная $g = \partial f/\partial t_i \in \mathcal{L}_2(R^d)$ по любому переменному $t_i \in R^1$ из $t = (t_1, \ldots, t_d) \in R^d$ связаны равенством

$$-\int \frac{\partial \varphi}{\partial t_i} f dt = \int \varphi g dt, \quad \varphi \in C_0^{\infty}(\mathbb{R}^d):$$

объединив все t_i , $j \neq i$, в переменное $s \in R^{d-1}$ и взяв произведение пробных функций от переменных s и t_i , как следствие, при почти всех $s \in R^{d-1}$ получим

$$-\int_{a}^{b} \frac{\partial \varphi}{\partial t_{i}} f dt_{i} = \int_{a}^{b} \varphi g dt_{i} = \int_{a}^{b} \frac{\partial \varphi}{\partial t_{i}} \left[\int_{a}^{t_{i}} g \right] dt_{i},$$

$$\varphi \in C_{0}^{\infty} ([a, b]),$$

на любом конечном интервале $a\leqslant t_i\leqslant b,$ и в силу этого здесь должно быть

$$f = \int_{a}^{t_i} g \, dt_i + C,$$

что указывает на абсолютную непрерывность функции f по переменному t_i с обычной производной $g = \partial f/\partial t_i$.

Таким образом, для любого t_i из $t=(t_1,\ldots,t_d)=(s,t_i)$ все функции $f=\partial^k u(s,t_i)$ с $|k|\leqslant p-1$ и обобщенной производной $\partial f/\partial t_i\in \mathcal{L}_2(R^d)$ при почти всех $s\in R^{d-1}$ абсолютно непрерывны по переменному t_i и имеют $\partial f/\partial t_i$ своей обычной производной.

Отметим, что к такого рода абсолютно непрерывным функциям применимо правило интегрирования по частям, которое дает тождество

$$-\left(\frac{\partial}{\partial t_i}\,\varphi,\,f\right) = \left(\varphi,\,\frac{\partial}{\partial t_i}\,f\right),$$

указывающее, что обычная производная $\frac{\partial}{\partial t_i} f \in \mathcal{L}_2(R^d)$ функции f задает и ее обобщенную производную по переменному t_i .

Остановившись на случае однородно-изотронного пространства $\mathring{W}_{2}^{\nu}(R^{d})$, характеризуемого целым p>0, видим, что принадлежность $u\in\mathring{W}_{2}^{\nu}(R^{d})$ можно определить условием абсолютной пепрерывности (указанного выше типа) по всем переменным самой функции u=u(t) и всех ее последующих обычных производных до перядки p-1 с $\partial^{k}u\in\mathscr{L}_{2}(R^{d})$ при $|k|\leqslant p-$ см. (2.17).

С очевидными изменениями это переносится и на случай анизотропного $\mathring{W}_{P}(R^{d})$ с мультинидексом $P = = (p_{1}, \ldots, p_{n}) - \text{см.} (2.17)'$.

 2° След обобщенных функций и граничные значения. Рассматривая функции $u \in W = \mathring{W}_2^{\rho}(T)$ в области $S \subseteq T \subseteq R^d$, вернемся к поставленному ранее вопросу об их предельном поведении вблизи границы $\Gamma = \partial S$, остановившись на случае, когда Γ есть (d-1)-мерное многообразие в R^d . Будем предполагать, что граница представима в виде колечного объединения

$$\Gamma = \cup \Gamma_{\alpha} \tag{4.3}$$

замкиутых «кусков» Γ_{α} , каждый из которых имеет окрестность в R^d , где после надлежащей замены неременных $t=\tau(s,\ r)$ типа (4.2) в локальных координатах $(s,\ r)$ представляется «илоским куском» $\widehat{\Gamma}_{\alpha} \subseteq R^{d-1}$ в (d-1)-мерном подпространстве неременного $s \subseteq R^{d-1}$ — в исходных координатах $t=\tau(s,\ r)$ Γ_{α} описывается уравнением

$$t = \tau(s, 0), \quad s \in \widehat{\Gamma}_{\alpha} \subseteq R^{d-1}.$$

В дальнейшем структура составляющих Γ отдельных кусков Γ_{α} не является существенной; мы будем их рассматривать лишь с точки зрения лебеговой меры ds в R^{d-1} , которая с $\widehat{\Gamma}_{\alpha} \subseteq R^{d-1}$ перепосится на Γ_{α} , предполагая, что пересечения различных Γ_{α} имеют меру 0 — понятно, что в целом мы имеем лебегову меру ds на Γ ; существенную роль будет играть соответствующее пространство $\mathscr{L}_2(\Gamma)$.

Представление (4.3) будет нами использовано для перехода от $\Gamma_{\alpha} \subseteq \Gamma$ к соответствующим «плоским кускам» $\widehat{\Gamma}_{\alpha} \subseteq R^{d-1}$; именно, локализовав $u \in W = \mathring{W}_2^p(T)$ как w с надлежащим мультипликатором $w \in C_0^{\infty}(R^d)$ в окрестности локальных координат $t = \tau(s, r)$, мы обратимся к функции $wu[\tau(s, r)]$ от повых переменных $(s, r) \subseteq R^t$,

$$uu \in \mathring{W}_{2}^{p}(R^{d}),$$

граничное поведение которой вблизи новой границы $\Gamma = R^{d-1} \supseteq \widehat{\Gamma}_{\alpha}$ описывает граничное поведение исходной функции u = u(t) вблизи $\Gamma_{\alpha} \subseteq \Gamma$ — в качестве повой области S с границей $\Gamma = R^{d-1}$ при этом появится соответствующее полупространство, скажем

$$S = R_+^d = \{(s, r): s \in \mathbb{R}^{d-1}, r > 0\}.$$

Имея это в виду, рассмотрим граничное поведение функций

$$u \in \mathring{W}_{2}^{p}(R^{d})$$

вблизи «грапицы» $\Gamma = R^{d-1}$, образованной подпространством переменного $s \in R^{d-1}$ в R^d . \square

Мы знаем, что для почти всех $s \in R^{r-1}$ каждая функция $u = u(s,r) \in \mathring{W}_{2}^{p}(R^{d})$ и ее последующие производные $\partial^{k}u$ порядка $|k| \leqslant p-1$ абсолютно пепрерывны по переменному r; в частности, сама функция u = u(s,r) и все ее последующие производные $\partial^{k}u$ порядка $k \leqslant p-1$ по переменному r таковы, что для почти всех $s \in R^{d-1}$ имеется предел

$$\lim_{r\to 0} \partial^k u(s, r) = \partial^k u(s, 0) = u^{(k)}(s). \tag{4.4}$$

Напомним, что u=u(t) как функция переменного t=(s,r) определена при почти всех $t\in R^d$, точнее, при изменении ее на множестве меры 0 она будет представлять тот же самый элемент пространства $\mathring{W}_2^p(R^d)$; естественно спросить, как такое изменение отразится на соответствующих функциях $u^{(k)}(s)$ в (4.4). Частично на этот вопрос сразу же можно ответить, для рассматриваемых в области $S=R_+^d$ функций $u\in \mathring{W}_2^p(R^d)$ взяв, например, пробные $\phi=x_n\in C_0^\infty(S)$ внда

$$x_n = x_n(s, r) = x(s)w_n(r)$$
 (4.5)

с $x(s) \in C_0^\infty\left(R^{d-1}\right)$ и дельта-образными $w_n(r) = nw(nr)$, $w \in C_0^\infty\left(R^1\right)$, на которых обобщенные производные $\partial^{\mathfrak{b}}u$, $k \leqslant p-1$, принимают значения

$$(x_n, \partial^h u) = (-1)^h (\partial^h x_n, u) =$$

$$= (-1)^h \int [\int \partial^h x_n u \, dr] \, ds = \int [\int x_n \partial^h u \, dr] \, ds =$$

$$= \int x(s) [\int \partial^h u(s, r) \, w_n(r) \, dr] \, ds \to \int x(s) \, u^{(h)}(s) \, ds,$$

где справа в пределе появляются функции $u^{(k)}(s)$ из (4.4), а сам предел

$$\lim \left(x_n, \, \hat{\partial}^h u\right) = \int x(s) \, u^{(h)}(s) \, ds \tag{4.6}$$

вместе с допредельными значениями $(x_n, \partial^k u) = (-1)^k (\partial^k x_n, u)$ не меняется при изменении u = u(t) на множестве меры 0. Ввиду произвольности «весовых функций» x(s), $s \in R^{d-1}$, отсюда следует, что для каждого элемента $u \in \mathring{W}_2^p(R^d)$ функции $u^{(k)} = u^{(k)}(s)$, $k \le p-1$, s (4.4) определены однозначно при почти всех $s \in R^{d-1}$. \square

Взятые нами в (4.5) функции $x_n \in \mathcal{D} = \mathcal{C}_0^\infty(R^d)$ в пределе дают обобщенную функцию $x = x^{(0)} \in \mathcal{D}^*$ с обобщенными производными $x^{(k)} = \partial^k x$ по переменному r вида

$$(\varphi, x^{(h)}) = (-1)^h \int_{\Gamma} x(s) \, \varphi^{(h)}(s) \, ds, \quad \varphi \in \mathcal{D}. \tag{4.7}$$

где $\varphi^{(k)}(s) = \partial^k \varphi(s, r)|_{r=0}, \ k \leq p-1;$ понятно, что обобщенные $x^{(k)} \in \mathcal{D}^*$ имеют посители $\sup x^{(k)} \subseteq \Gamma = R^{j-1}$. Покажем, что все $x^{(k)} \in \mathcal{D}^*$ $(k \leq p-1)$ входят в пространство обобщенных пробных функций $X = \mathring{W}_2^{-p}(R^d)$. Установим сначала, что в (4.7) для функций $\varphi^{(k)}(s)$, $s \in \Gamma$, на $\Gamma = R^{d-1}$ при всех $\varphi \in \mathcal{D}$ справедлива оценка $\|\varphi^{(k)}\|_{\mathcal{D}}$ $\|\varphi^{(k)}\|_{\mathcal{D}}$

$$\|\varphi^{(h)}\|_{\mathscr{L}_{2}(\Gamma)} \leqslant C \|\varphi\|_{p}, \quad k \leqslant p-1.$$
 (4.8)

Она легко получается с помощью преобразования Фурье $\widetilde{\varphi}(\lambda)$ с двойственным для t=(s,r) переменным $\lambda=(\sigma,\rho)$; именно, согласно равенству Парсеваля для $\varphi^{(h)}(s)=$ $=\partial^h \varphi(s,r)|_{r=0}$ с

$$\widecheck{\varphi^{(k)}}(\sigma) = \frac{1}{(2\pi)^{1/2}} \int (i\rho)^k \, \widecheck{\varphi}(\sigma, \rho) \, d\rho,$$

$$|\widetilde{\varphi^{(k)}}(\sigma)|^2 \leq C \int \frac{|\rho|^{2k}}{1+|\lambda|^{2p}} d\rho \cdot \int |\widetilde{\varphi}|^2 (1+|\lambda|^{2p}) d\rho \leq C \int |\widetilde{\varphi}(\lambda)|^2 (1+|\lambda|^{2p}) d\rho$$

при $k \leq p-1$, получаем

$$\int |\varphi^{(h)}(s)|^2 ds = \int |\widetilde{\varphi^{(h)}}(\sigma)|^2 d\sigma \leqslant$$

$$\leqslant C \int \int |\widetilde{\varphi}(\lambda)|^2 (1 + |\lambda|^{2p}) d\sigma d\rho \leqslant C \|\varphi\|_p^2$$

— напомним здесь о представлении (2.14) пространства $W=\mathring{W}_2^{\nu}(R^d)$ с помощью преобразования Фурье. Для самих же $x^{(k)}\in \mathscr{D}^*$ в (4.7) теперь получаем

$$\begin{split} \|\left(\mathbf{q},\,x^{(h)}\right)\| \leqslant \|x\|_{\mathscr{Q}_{2}(\Gamma)} \cdot \|\mathbf{q}^{(h)}\|_{\mathscr{L}_{2}(\Gamma)} \leqslant \\ \leqslant C\|x\|_{\mathscr{Q}_{q}(\Gamma)} \cdot \|\mathbf{q}\|_{\ell}, \quad \mathbf{q} \in \mathscr{D}, \end{split}$$

и это уже непосредственно показывает, что $x^{(h)} \in X = = \dot{W}_{\circ}^{-p}(R^d)$. причем

$$\|x^{(k)}\|_X = \|x^{(k)}\|_{-p} \leqslant C \|x\|_{\mathscr{D}_2(\Gamma)}, \quad k \leqslant p-1.$$
 (4.9)

для всех «весовых функций» x(s), $s \in \Gamma$, из $\mathscr{L}_2(\Gamma)$.

Из оценки (4.8) вытекает также, что для любого $u \in \mathring{W}_{2}^{p}(R^{d})$ как предела $u = \lim \varphi$ функций $\varphi \in \mathscr{D} = C_{0}^{\infty}(R^{d})$ в $W = \mathring{W}_{2}^{p}(R^{d})$ имеются соответствующие

$$u^{(k)}(s) = \lim \varphi^{(k)}(s),$$
 (4.10)

являющиеся пределом в $\mathscr{L}_2(\Gamma)$ производных $\varphi^{(h)}(s)==\hat{o}^t\varphi(s,r)|_{r=0}$ по переменному r порядка $k\leqslant p-1$, с помощью которых значения обобщенных $x^{(h)}\in X==\mathring{W}_2^{-p}(R^d)$ вида (4.7) на $u\in W=\mathring{W}_2^p(R^d)$ могут быть выражены как

$$(u, x^{(h)}) = \lim (\varphi, x^{(h)}) =$$

$$= \lim (-1)^{k} \int \varphi^{(k)}(s) x(s) ds = (-1)^{k} \int u^{(k)}(s) x(s) ds.$$

Сравним это с тем, что ранее получилось в (4.6) для функций $u^{(k)}(s)$ из (4.4), обратившись для этого к уже послужившим пам пробным $x_n \in \mathcal{D}$ вида (4.5). Покажем, что их производные $x_n^{(k)} = \partial^k x_n$ порядка $k \leq p-1$ сходятся в пространстве обобщенных пробных функций $X = \mathring{W}_2^{-p}(R^d)$; понятно, что, согласно (4.6), при сходимости $\partial^h x_n \to \partial^h x$ предельными $x^{(k)} = \partial^h x$ могут быть лишь соответствующие $x^{(k)} \in X$ вида (4.7). Указанную сходимость легко установить с помощью преобразования Фурье

$$\widetilde{\partial^{h}}\widehat{x_{n}}(\lambda) = \widehat{x}(\sigma) \left[(i\rho)^{h} w(\rho/n) \right],
\widetilde{\partial^{h}}\widehat{x}(\lambda) = \widehat{x}(\sigma) (i\rho)^{h},$$

где $\lambda = (\sigma, \rho)$; именно, используя представление (2.16)

86

для пространства $X=\mathring{W}_{2}^{-p}ig(R^{d}ig)$ и учитывая, что

$$\frac{\|\rho\|^{2^k}}{1+\|\lambda\|^{2p}} \leqslant (1+\rho^2)^{-1}, \quad k \leqslant p-1,$$

получаем

$$\begin{split} \partial^{h} x_{n} &= \partial^{h} x|_{-p}^{2} \times \int |\widehat{\partial^{h} x_{n}} - \widehat{\partial^{h} x}|^{2} (1 + |\lambda|^{2p})^{-1} d\lambda \leqslant \\ &\leqslant \int |\widetilde{x}| (\sigma)|^{2} d\sigma \cdot \int |\widetilde{w}| (\rho/n) - 1|^{2} \frac{d\rho}{1 - \rho^{2}} \to 0. \end{split}$$

При этом слабый предел

$$\lim \left(u,\,\partial^k x_n\right) = \left(u,\,\partial^k x\right) = (-1)^k \int u^{(k)}\left(s\right) x\left(s\right) ds$$

выражается как мы только что видели, через фупкцип $u^{(k)}(s)$ из (4.10), а, согласно (4.6), этот предел представим в том же виде через функции $u^{(k)}(s)$ из (4.4); ввиду произвольности весовых x(s) отсюда заключаем, что $u^{(k)} = u^{(k)}(s)$, $k \le p-1$, e(4.4), (4.10) суть одни и те же функции (определенные при почти всех $s \in \Gamma$ па границе $\Gamma = R^{d-1}$)—их называют следом функции $u \in \mathbb{R}^{d}$ и ее производных $u \in \mathbb{R}^{d}$ и, $u \in \mathbb{R}^{d}$ и ее производных $u \in \mathbb{R}^{d}$ и, $u \in \mathbb{R}^{d}$ и ее производных $u \in \mathbb{R}^{d}$ и, $u \in \mathbb{R}^{d}$ и ее производных $u \in \mathbb{R}^{d}$ и ее

Отметим, что оценка (4.8) распространяется на все $\varphi = u \in \mathring{W}_{2}^{p}(R^{d})$ с $\varphi^{(k)} = u^{(k)}, \ k \leq p-1$.

Возьмем функцию u=u(t), для которой указанные выше производные $\partial^s u$ по переменному r из $t=(s,\ r)$ имеют нулевой след $u^{(k)}=0$ на $\Gamma=R^{d-1}$ при всех $k\leqslant p-1$, и рассмотрим ее сужение

$$u_0 = u_0(t) = \begin{cases} u(t), & t \in S, \\ 0, & t \notin S \end{cases} \tag{4.11}$$

в области $S \subseteq R^d$ с границей Γ — скажем, в полупространстве $S = R^d_+$ всех t = (s, r), r > 0. Вместе с $u \in \mathring{W}_2^p(R^d)$ функция $u_0 = u_0(t)$ обладает тем свойством, что в области S она сама и ее последовательные производные $\partial^k u_0 = \partial^k u_0(t)$ по всем переменным из $t \in R^d$ порядка $|k| \le p-1$ абсолютно непрерывны по каждому t_i из t (для почти всех остальных переменных в их координатном полпространстве R^{d-1}); применение правила интегриро-

вания по частям для любой пробной $\mathfrak{q} \in \mathcal{D} = C_0^\infty \left(R^d \right)$ последовательно при всех $|k| \leqslant p$ дает *)

$$\int_{T} \partial^{k} q u_{0} dt = \int_{S} \hat{\sigma}^{k} q u_{0} dt = (-1)^{|k|} \int_{S} q \hat{\sigma}^{k} u_{0}(t) dt =$$

$$= (-1)^{|k|} \int_{T}^{\infty} q \, \sigma^{k} u_{0}(t) \, dt \, .$$

Это показывает, что обобщенные производные $\partial^{\circ}u_{0}$, $|k|\leqslant p$, во всей области $T=R^{d}$ суть

$$\hat{\sigma}^{k}u_{0}\left(t\right) = \begin{cases} \hat{\sigma}^{k}u\left(t\right), & t \in S. \\ 0, & t \notin S, \end{cases}$$

представляя сужение функций $\partial^k u \in \mathcal{L}_2(T)$ в области $S=R_-^d$. Таким образом, операция срезки (4.11) для любой функции $u \in \mathring{W}_2^p(T)$ с и улевым полным следом $u^{(k)}=0,\ k=0,\ \ldots,\ p-1,$ на границе $\Gamma=\partial S$ дает

$$u_0 \in \mathring{W}_2^p(T)$$
.

Более того,

$$u_0 \in \mathring{W}_2^p(S) = \left[C_0^{\infty}(S) \right]$$
 (4.12)

в самом деле, такое включение очевидно для сдвинутых по переменному $r \to r - h, \ h > 0,$ функций $u_0(s, r - h)$ с $\sup u_0 \subseteq S = R_+^d = \{t = (s, r), \ r > 0\} - \text{см.}$ лемму о локализации. а исходная функция u_0 есть предел в $\mathring{W}_2^p(T)$

$$u_0(s,r) = \lim_{h \to 0} u_0(s,r-h). \square$$

$$-\int_{\mathbf{R}^d_+} \frac{\partial v}{\partial r} u \, dt = \int_{R^{d-1}} \left[-\int_0^\infty \frac{\partial v}{\partial r} u \, dr \right] ds =$$

$$= \int_{R^{d-1}} \left[v(s, 0) u(s, 0) + \int_{0}^{\infty} v \frac{\partial u}{\partial r} dr \right] ds$$

с нулевым следом $u(s, 0) = \lim_{r \to 0} u(s, r) = 0.$

^{*)} Здесь для проверки удобно выделить отдельно дифференцирование ∂^1 по переменным из $s \in R^{d-1}$ и ∂^h по переменному r; учитывая независимость производных функций $\phi \in \mathcal{D}$ от порядка дифференцирования и положив $v = \partial^1 \phi$, например, будем иметь

Покажем, что описанные в (4.4)-(4.12) граничные свойства имеют место в случае границы $\Gamma=\partial S$ общего типа (4.3).

Имеющее локальный характер предельное соотношение (4.4) пепосредственно переносится на функции $v \in \mathcal{W}_2^p(T)$, которые в окрестности локальных коордилат $t=\tau(s,\,r)$ для каждого $\Gamma_\alpha \subseteq \Gamma$ в (4.3) могут рассматриваться как функции $u(\tau(s,\,r)) \in \mathring{W}_2^p(R^d)$, и для почти всех $s \in \Gamma_\alpha$ производные $u^{(h)}(t) = \partial^h u/\partial r^h$ порядка $k \leq p-1$ при $r \to 0$ имеют указанный в (4.4) предел, определяющий след производных $u^{(h)}, k \leq p-1$, по направлению нормали к границе Γ на каждом $\Gamma_\alpha \subseteq \Gamma$ и в целом на $\Gamma = \cup \Gamma_\alpha$.

Этот след можно определить и предельным соотнелением (4.10), распространив на случай границы Γ обидего типа (4.3) оценки (4.8), (4.9) со всеми вытекающими из илх следствиями. Именно, взяв функцию $\varphi \in C_0^p(T)$ и локализовав ее как $w\varphi = \varphi$ в окрестности локальных координат $t = \tau(s, r)$ с номощью $w \in C_0^\infty(R^d)$, w = 1 в окрестности компакта $\Gamma_\alpha \cap \text{ѕирр}\, \varphi$, мы можем применить к $w\varphi [\tau(s,r)] \in C_0^p(R^d)$ оценку (4.8), действующую для всех функций из $\mathring{W}_2^p(R^d) \supseteq C_0^p(R^d)$. которая на $\Gamma_\alpha \subseteq \Gamma$ из данной координатной окрестности дает

$$\| \operatorname{q}^{(h)} \|_{\mathscr{L}_{2}(\Gamma_{\alpha})} \leqslant C \| \operatorname{w} \operatorname{q} |_{p} \leqslant C \| \operatorname{q} \|_{p};$$

суммируя здесь по всем Γ_{α} , в конечном объединении (4.3) получаем оценку (4.8) на $\Gamma = \cup \Gamma_{\alpha}$ — понятно, что речь идет о производных $\varphi^{(k)} = \partial^k \varphi$ в окрестности границы Γ , вычисляемых в локальных координатах $t = \tau(s, r)$; как

$$\partial^{k} \varphi = \partial^{k} \varphi(t) / \partial r^{k}, \quad k \leqslant p-1.$$

Повторим здесь, что оценка (4.8) с $\varphi \in C_0^p(T)$ позволяет определить след самой функции $u \in \mathring{W}_2^p(T)$ и ее k-1 обобщенных производных $\partial^k u$ (имеющихся в окрестности границы Γ) как предел

$$u^{(h)}(s) = \lim \varphi^{(h)}(s), \quad s \in \Gamma,$$

в пространстве $\mathscr{L}_2(\Gamma)$ с помощью $\varphi \in C_0^p(T)$. $\lim \varphi = u$ в $W_2^p(T)$. Сама оцепка при указанном предельном переходе распространяется на все функции $\varphi = u \in \mathring{W}_2^p(T)$ $\|u^{(k)}\|_{\mathscr{L}_2(\Gamma)} \leqslant C \|u\|_p, \quad k \leqslant p-1.$ (4.13)

Так же как и раньше, эта оценка позволяет установить принадлежность обобщенных $x^{(k)},\ k\leqslant p-1,$ вида (4.7) к пространству $X=\mathring{W}_2^{-p}(T),$ давая для них оценку (4.9).

Отметим, что формуле (4.7), задающей обобщенные $x^{(k)} \in \mathcal{D}^*$, можно дать несколько другую интерпретацию, ири $u = \mathfrak{q} \in \mathcal{D}$ рассматривая

$$(-1)^{k}(u, x^{(k)}) = (-1)^{k}(x^{(k)}, u) = (x, u^{(k)}), \quad k \le p - 1,$$
(4.14)

как граничные значения функции $u \in W = \mathring{W}_2^p(T)$ на пробных $(-1)^k x^{(k)} \in X$, а весовые функции x = x(s), $s \in \Gamma$, в (4.7) как «пробные» $x \in \mathcal{L}_2(\Gamma)$, с помощью которых след производных $\partial^k u$ на Γ можно определить как обобщенные функции

$$u^{(h)} = (x, u^{(h)}), \quad x \in \mathcal{L}_2(\Gamma).$$

При этом равенство (4.14) можно взять за определение обобщенных $u^{(k)}$, $k \leq p-1$. Очевидно, что это распространяется с $u=\varphi \in \mathcal{D}$ предельным переходом $\varphi \to u$ в $W=\mathring{W}_2^p(T)$ на все функции $u \in \mathring{W}_2^p(T)$. при котором, согласно (4.13), мы имеем $\varphi^{(k)} \to u^{(k)}$ в $\mathscr{L}_2(\Gamma)$, $k \leq p-1$. \square

Йам осталось еще распространить на случай общей границы Γ определенную в $\mathring{W}_{2}^{p}(T)$ операцию (4.11) и включение (4.12).

Это легко сделать, когда в окрестности любой компактной части $\Gamma_{\rm loc} \subseteq \Gamma$ имеется «разложение единицы»

$$1=\sum_{j}w_{j},$$

в котором каждая функция $w_j \in C_0^\infty(R^d)$ имеет носитель внутри окрестности локальных координат $t = \tau(s, r)$ для

какого-либо Га в представлении (4.3)

$$\Gamma_{\alpha} \supseteq \Gamma \cap \operatorname{supp} w_j$$

— например, такое «разложение единицы» имеется в случае, когда граница Γ представляет собой гладкое (d-1)-мерное многообразие с картой окрестностей локальных координат $t= au(s,\ r)$ типа (4.2). Удобно сначала взять функции $u\in\mathring{W}_2^p(T)$ с компактными посителями $\sup u\in T;$ для каждой из них указанное «разложение единицы» в окрестности $\Gamma_{\rm loc}=\Gamma\cap {\rm supp}\, u$ при операции «срезки» (4.11) дает нам представление

$$u_0 = \left(1 - \sum_j w_j\right) u_0 + \sum_j w_j u_0 = \left[\left(1 - \sum_j w_j\right) u\right]_0 + \sum_j (w_j u)_0.$$

где первое слагаемое есть функция из $\hat{W}_2^p(S)$ в силу уже известной нам теоремы о локализации, а каждое из остальных слагаемых $w_ju^0=(w_ju)^0$ с компактиым носителем в окрестности локальных координат $t=\tau(s,r)$ при достаточно малых сдвигах $r\to r+1/n$ переменного r>0 дает функции с компактным посителем в области S. является их пределом при $n\to\infty$ в $\hat{W}_2^p(T)$ и вместе с ними входит в $\hat{W}_2^p(S)$ согласно упомянутой уже теореме о локализации. К общим функциям $u\in\mathring{W}_2^p(T)$ теперь можно перейти предельным переходом от функций

$$u_n = w_n u \to u \in \mathring{W}_2^p(T)$$

с «аппроксимативной единицей» $w_n = w\left(t/n\right) \in C_0^\infty(R^d)$. \square Подведем итог всему сказанному выше о граничном

поведении функций $u \in \mathring{W}_{2}^{p}(T)$ в области $S \subseteq T$ с границей $\Gamma = \partial S$ рассмотренного типа:

при почти всех $s \in \Gamma$ имеются производные $u^{(k)} = u^{(k)}(s)$ порядка $k \leq p-1$ по нормали κ Γ , $u^{(k)} \in \mathcal{L}_2(\Gamma)$ с оценкой (4.13); как обобщенные функции $u^{(k)}$, $k \leq p-1$, могут быть определены на Γ формулой (4.14); условие

$$u^{(k)} = 0, \quad k \le p - 1,$$
 (4.15)

характеризует сужение $u_0 = u$ в области $S \subseteq T$ как $u_0 \subseteq W^p(S)$: издовиз

 $\in \mathring{W}_{\mathbf{2}}^{p}(S); \ yclosue$ $\sup u \subseteq [S] \tag{4.16}$

дает $u = u_0$ в области T и характеризует функции $u \in \mathring{W}_2^p(S)$.

Уже отмечалось, что $u^{(k)}$ называют следом на границе $\Gamma = \partial S$ нормальной производной $\partial^k u$ обобщенной функции $u \in \mathring{W}_2^p(T)$; будем называть полным следом совокупность $u^{(k)}$, $k \leq p-1$. \square

Описанные выше свойства соболевских пространств $\hat{W}_2^{p'}(T) \subseteq \hat{W}_2^{p}(R^d)$ для однородно-изотронного случая, характеризуемого одинм целым p>0, с очевидно необходимыми изменениями перепосятся на анизотронные пространства $\hat{W}_2^{p}(R^d)$ с мультипидексом $\mathbf{p}=(p_1,\ldots,p_n)$, определяющим норму

$$||u||_p^2 = \sum_{i=1}^n \sum_{|h_i| \le p_i} ||\partial^{h_i} u||_{\mathcal{Z}_2}^2,$$

где i указывает соответствующую группу переменных $t_i \in R^{d_i}$ из $t \in R^d (\sum d_i = d)$. Возникающая при различных p_i апизотропность пакладывает ограничения на возможность использованного пами перехода ог $\Gamma = R^{d-1}$ к границе $\Gamma = \cup \Gamma_\alpha$ произвольного типа (4.3). Эти ограничения касаются представления

$$\Gamma_{\alpha} = \{t = \tau(s, r), s \in \widehat{\Gamma}_{\alpha}, r = 0\}$$

«плоским куском» $\widehat{\Gamma}_{\alpha} \subseteq R^{d-1}$ и могут быть выражены тем условием, что преобразование $t=\tau(s,\ r)$ типа (4.2) сохраняет соответствующие группы переменных

$$t_i - \tau_i(\widehat{t_i}), \quad \widehat{t_i} \in R^{d_i}$$

 $(i = 1, ..., n)$

н тем самым сохраняет само пространство $\mathring{W}_{2}^{p}(R^{d})$ с $p=(p_{1},\ldots,p_{n})$. Понятно, что в окрестности локальных координат $t=\tau(s,r)$ с переменным $r\in R$ из группы $t_{i}\in R^{di}$ описанные для однородного случая с одним p граничные свойства переносятся в отдельности на каждый кусок $\Gamma_{\alpha}\subseteq \Gamma$ со своим $p=p_{i}$, что вносит изменения в перавенства (4.8), (4.9) и граничные свойства на границе $\Gamma=\cup\Gamma_{\alpha}$ в целом—мы имеем в виду свой-

ства, определяемые наличием на Γ_a следа $u^{(k)}(s)$, $s \in$ $\in \Gamma_a$, нормальных производных порядка $k \le p-1$, всобще говоря, со своим $p=p_i$ для каждого $\Gamma_\alpha \subseteq \Gamma$. Очевидно, что перавенства (4.8), (4.9) и вытекающие из них следствия, а также определяющая след формула (4.14) сохраняются с тем лишь изменением, что пужно ограничиться соответствующими функциями x(s), $s \in \Gamma$. из $\mathscr{L}_2(\Gamma)$ с посителями $\operatorname{supp} x \subseteq \Gamma_\alpha$ в каждом отдельном $\Gamma_n \subseteq \Gamma$. Очевидно, что сохраняет свою силу и условие (4.15) нулевого полного следа $u^{(k)}$, $k \le p-1$ (с соответствующим $p = p_i$), а вместе с пим и условие (4.16). Поясним сказанное на примере двух различных $p_1 > 1$, $p_2=1$ в применении к функциям $u \in \mathring{W}_2^{(p_1,p_2)}(R')$ с группой переменных $t_1 \in R^{t-1}$ и $t_2 \in R^1$; скажем. Для полупространства $S = \{t_1 \in \mathbb{R}^{d-1}, t_2 > 0\}$ полный след на границе $\Gamma = \partial S$ есть отвечающий $p = p_2 = 1$ след семой функции $u=u^{(0)}(s), s\in \Gamma$; для цилиндра $S=\{t_1\equiv G,$ $t_2 \in R^1$ } с основанием $G \subseteq R^{d-1}$ полный след на $\Gamma = \partial S$ есть отвечающий $p=p_1$ след всех нормальных к поверхности цилиндра производных $u^{(h)}(s)$, $s \in \Gamma$, порядка $k \leq$

 $\leq p-1$ и т. п. 3° Полнота системы граничных значений. Рассматривая функции $u \in \mathring{W}_{2}^{p}(R^{d})$ в области $S \subseteq R^{d}$, мы ввели $W_{2}^{p}(S)$ как пространство, образованное всеми этими обобщенными функциями

$$u = (\varphi, u), \quad \varphi \in C_0^{\infty}(S);$$

нонятно, что обратившись к обобщенным пробным $x \in X(S)$ из замыкания $X(S) = \begin{bmatrix} C_0^{\infty}(S) \end{bmatrix}$ в $X = \mathring{W}_2^{-p}(R^d)$ в общей схеме (1.2) - (1.7) мы будем иметь $u \in W(S)$ как функции

$$u = (x, u), x \in X(S),$$

с граничными значениями

$$(x, u) = \lim (\varphi, u), \quad \varphi \in C_0^{\infty}(S), \tag{4.17}$$

для граничных пробных $x \in X(S)$ с носителями $\sup x \subseteq \Gamma$ на границе $\Gamma = \partial S$. Введем соответственно обобщенную границу $X(\Gamma)$ как совокупность всех обобщенных пробных $x \in X(S)$, $\sup x \subseteq \Gamma$; очевидно. что $X(\Gamma)$ есть линейное подпространство (поясним: для пре-

с носителями supp $x \subseteq \Gamma$.

дела $x = \lim x_n \in X(S)$ обобщенных $x_n \in X(\Gamma)$ мы имеем $(\varphi, x) = \lim (\varphi, x_n) = 0, \quad \varphi \in C_0^\infty(\mathbb{R}^d \setminus \Gamma).$

что и означает включение supp $x \subseteq \Gamma$).

Ограничившись случаем, когда граница Γ представляет собой гладкое (d-1)-мерное многообразие в R^d , покажем, что

 $X(\Gamma)$ есть подпространство всех $x \in X = \mathring{W}_2^{-p}(R^d)$

Достаточно показать, что $C_0^{\infty}(S)$ илотпо в подпространстве X([S]) всех $x \in X$ с носителями $\sup x \subseteq [S]$ в замыкании [S] области $S \subseteq R^d$:

$$X([S]) = \left[C_0^{\infty}(S)\right] = X(S).$$

Рассматривая $u \in W = \mathring{W}_2^p(R^d)$ как элементы $u = (x, u), x \in X$, сопряженного пространства $W = X^*$, возьмем произвольную функцию $u \in W$, аннулирующую все $x \in C_0(S_1)$. $S_1 = S$. Как мы знаем (см. общее условне (4.16)), равная 0 в дополнительной к $S_2 = R^n \setminus [S]$ области $S_1 = S$ обобщенная функция $u \in W = \mathring{W}_2^p(R^d)$ является пределом $u = \lim \varphi$ в W функций $\varphi \in C_0^\infty(S_2)$, и ее значения на обобщенных пробных $x \in X([S_1])$ с посителями supp $x \subseteq [S_1]$ вне области S_2 есть

$$(x, u) = (u, x) = \lim_{x \to 0} (\varphi, x) = 0.$$

Таким образом, произвольный липейный функционал $u \in X^*$, равный 0 на $C_0^\infty(S_1) \subseteq X$, равен 0 на подпространстве $X([S_1])$, и, следовательно, $C_0^\infty(S_1)$ плотно в $X([S_1])$.

Напомним, что с помощью обобщенных пробных функций впда (4.7) для $u \in \mathring{W}_{2}^{p}(S)$ был определен их полный след на $\Gamma = \partial S$ (см. по этому поводу (4.14)). Покажем, что всякая система граничных пробных функций $x \in X(\Gamma)$, определяющая полный след для $u \in \mathring{W}_{2}^{p}(S)$ на границе Γ , является полной в гильбертовом $X(\Gamma)$. Действительно, всякая функция $u \in W = \mathring{W}_{2}^{p}(R^{d})$ с пулевыми граничными зпачениями $(x, u) = \mathring{W}_{2}^{p}(R^{d})$ с пулевыми граничными зпачениями $(x, u) = \mathring{W}_{2}^{p}(R^{d})$

=0 на такой системе пробных $x\!\in\! X(\Gamma)$ имеет нулевой полный след на Γ , а, как мы знаем, это есть условие

того, что ее сужение $u_0=u$ в области S есть $u_0\in \mathring{\mathbb{C}}_2^{w}(S)=\left[C_0^{\infty}(S)\right]$ (см. по этому поводу (4.15)); попятно, что $(x,\ u)=(x,\ u_0)$ при всех $x\in \left[C_0^{\infty}(S)\right]=X\left([S]\right)$, и, рассматривая $u_0\in W$ как предел $u_0=\lim \varphi$ функций $\varphi\in C_0^{\infty}(S)$ в $\mathring{W}_2^p(S)$, мы будем иметь

$$(x, u) = (x, u_0) = (u_0, x) = \lim (\varphi, x) = 0$$

при всех $x \in X(\Gamma) \subseteq X([S])$ с посителями $\sup x \subseteq \Gamma$ вне области S. Таким образом, всякая функция $u \in W = X^*$, апнулирующая данную систему пробных $x \in X(\Gamma)$, анпулирует все $x \in X(\Gamma)$, что и определяет свойство полноты этой системы в $X(\Gamma)$.

Возвращаясь к первоначально поставленному вопросу о граничных значениях (4.1), как итог выделим следующий результат.

Теорема. Предельные граничные значения $(x, u) = \lim_{n \to \infty} (\varphi, x)$ для обобщенной функции $u = (\varphi, u)$. $\varphi \in \mathcal{C}_0^{\infty}(S)$, из пространства $W(S) = W_2^{\rho}(S)$ в области $S \subseteq R^d$ суть граничные значения $(x, u), x \in X(\Gamma)$. на всех обобщенных пробных $x \in X = \hat{W}_2^{-\rho}(T)$ с носителями $\sup_{n \to \infty} x \subseteq \Gamma$ на границе $\Gamma = \partial S$, и все они определяются полным следом функции $u \in W_2^{\rho}(S)$ на границе Γ .

Для ясности добавим, что каждая пробная функция $x \in X(\Gamma)$ есть предел $x = \lim x_n$ пробных x_n , являющихся линейными комбинациями из полной в $X(\Gamma)$ системы обобщенных пробных функций вида (4.7), и

$$(x, u) = \lim (x_n, u). \square$$

Выделенная выше теорема распространяется на вектор ны е обобщенные функции $u \in \mathbf{W}_2^p(S)$ со значениями $(x, u) \in H$ в гильбертовом пространстве H и, в частности, на случайные обобщенные функции со значениями в пространстве $H = \mathcal{L}_2(\Omega)$ случайных величии на вероятностном Ω ; в уточнении пуждается лишь о пределение следа. Напомним, что $\mathbf{W}_2^p(S)$ означает сужение соответствующего $\mathbf{W}_2^p(R^d)$ в области $S \subseteq R^d$, а сам функциональный класс $\mathbf{W}_2^p(R^d)$ о пределяется условием непрерывности в H составляющих его обобщенных функций

$$u=(\varphi,u), \quad \varphi \in C_0^\infty(\mathbb{R}^d),$$

относительно нормы $\|\phi\|_{-p}$ в соболевском $X = \mathring{W}_2^{-p}(R^d)$. Имея в виду для начала однородно-изотропные $\mathring{W}_2^p(R^d)$, характеризуемые одним целым $p \geqslant 0$, отметим, что локальные свойства случайных обобщенных функций $u \in \mathring{W}_2^p(R^d)$ много хуже, чем известные нам свойства детерминированных $u \in \mathring{W}_2^p(R^d)$; грубо говоря, локально обобщенные случайные функции $u \in \mathring{W}_2^p(R^d)$ могут быть реализованы лишь как функции из $\mathring{W}_2^q(R^d)$ с $q (см. по этому поводу (3.8), (3.41)). Общую ситуацию здесь можно произлюстрировать на примере так называемого «белого шума», представимого ебобщенной случайной функцией <math>u = (\varphi, u)$ с

$$\|(\varphi, u)\|_H^2 = E |(\varphi, u)|^2 = \|\varphi\|_{\mathscr{L}_2}^2, \quad \varphi \in C_0^{\infty}(\mathbb{R}^d).$$

— такая функция, непрерывная относительно нормы $\| \phi \| = \| \phi \|_{\mathscr{L}_2}$, даже локально не может быть реализована как функция из \mathscr{L}_2 (она локально реализуется линь в соболевском \mathring{W}_2^q с q < -d/2). Тем не менее для обобщенных случайных функций $u \in \mathring{\mathbf{W}}_2^p(S)$ и обобщени и к пормальных производных $\partial^h u$, $k \leqslant p-1$, вблизи границы $\Gamma = \partial S$ с помощью формулы (4.14) можно определить их след на Γ как обобщенные функции

 $u^{(h)} = (x, u^{(h)}), \quad x \in \mathcal{L}_2(\Gamma).$ (4.18)

где значения $(x, u^{(k)})$ па пробных $x \in \mathcal{L}_2(\Gamma)$ суть граничные значения функции $u \in \mathbf{W}_2^p(S)$ на обобщенных пробных $(-1)^k x^{(k)} \in X(\Gamma)$ из (4.7) с соответствующими весовыми функциями $x \in \mathcal{L}_2(\Gamma)$; полная в $X(\Gamma)$ система таких обобщенных пробных функций определяет полный след функций $u \in \mathbf{W}_2^p(S)$ на границе Γ . Понятно, что так же, как и раньше для детерминированных функций, это распространяется на анизотронные пространства с мультиницексом $\mathbf{p} = (p_1, \ldots, p_n)$.

4° Некоторые функциональные свойства граничных значений. Как пример рассмотрим обобщенные случайные функции $u=(\varphi, u), \ \varphi \in C_0^\infty(T), \$ пз пространства $\mathring{\mathbf{W}}_2^p(T)$ в цилипдрической области $T=G\times(a,\infty)$ с мультииндексом $p=(p_1,\ p_2),$ отвечающим группе переменных $t_1\in G$

в области $G \subseteq R^{d-1}$ и $t_2 \subseteq (a, \infty)$. Обратимся к следу

$$u_r = (x, u_r), \quad x \in C_0^{\infty}(G),$$

на каждом сечении области Т гиперплоскостью

$$\Gamma_r = \{t_1 \in R^{d-1}, t_2 = r\}.$$

Напомним, что согласно формуле (4.14),

$$(x, u_r) = (x_r, u)$$
 (4.19)

для обобщенных пробных

$$x_r = x \cdot \delta_r = x(t_1) \cdot \delta(t_2 - r) \in X$$

вида (4.7) с весовыми функциями $x=x(t_1)$ переменного $t_1=s\in R^{d-1}$ и дельта-функциями $\delta_r=\delta(t_2-r)$ переменного $t_2\in R^1$. Рассматривая $u=(\varphi,u)$, непрерывные по φ в соболевском пространстве $X=\overset{\circ}{W_2}^{-p}(T)$, нам удобно будет воспользоваться соответствующим вложением $\overset{\circ}{W_2}^{-p}(T)\subseteq \overset{\circ}{W_2}^{-p}(R^d)$, в общей форме указанным в (4.9). Положив $p_1=l$ и $p_2=m$, покажем, что

$$u_r \in \mathring{\mathbf{W}}_2^q(G), \quad q = [l - l/(2m)].$$
 (4.20)

Воспользовавшись преобразованием Фурье с двойственным для $t=(s,\ r)$ переменным $\lambda=(\sigma,\ \rho)$, дтя обобщенных пробных $x_r \in X \subseteq \mathring{W}_2^{-(l,m)}(R^d)$, согласно представлению (2.16), получим

$$\|x_r\|_X^2 \times \int |\widetilde{x}(\sigma)|^2 \left[\int \frac{d\rho}{(1+|\sigma|^2)^l+\rho^{2m}}\right] d\sigma.$$

где при $1+|\sigma|^2=a^2$ и $k \le l-l/(2m)$ мы имеем

$$\int \frac{d\rho}{a^{2l} + \rho^{2m}} = \frac{1}{a^{2k}} \left[a^{2k - 2l + l/m} \right] \int \frac{d\rho}{1 + \rho^{2m}} \leqslant \frac{C}{a^{2k}}.$$

так что

$$||x_r||_X^2 \leqslant C \int |\widetilde{x}(\sigma)|^2 \frac{d\sigma}{\left(1 + |\sigma^2|\right)^h} \times ||x||_{-h}^2.$$

справа указана норма весовых функций $x \in C_0^\infty(R^{d-1})$ из (4.7) в соболевском пространстве $\mathring{W}_2^{-k}(R^{d-1})$. В итоге

для напбольшего k = [l - l/(2m)] = q получаем $\|x_r\|_X^2 \leqslant C \|x\|_{-q}^2$,

что указывает на непрерывность обобщенных функций (4.19) относительно $x \in C_0^{\infty}(G)$ по норме $\|x\|_{-q}$ в соболевском пространстве $\mathring{W}_2^{-q}(G)$, а это и определяет включение (4.20).

Отметим, что здесь $q \ge 0$, и, в частности, для случайных функций $u \in \mathring{\mathbf{W}}_2^{(l,m)}(T)$ мы имеем

$$E | (x, u_r)|^2 \le C \|x\|_{\mathscr{Z}_{2}(G)}^2, \quad x \in C_0^{\infty}(G).$$
 (4.21)

Укажем на непрерывность обобщенных пробных $x_r = x\delta$, в (4.19) по переменному r — скажем,

$$\|x_{r+h}-x_r\|_X^2 \times$$

$$\times \int \int |\widetilde{x}(\sigma)|^2 \left| e^{i\rho h} - 1 \right|^2 \frac{d\sigma \, d\rho}{(1 + |\sigma|^2)^l + \rho^{2m}} \leqslant C \|x\|_{\mathscr{L}_2(G)}^2 \theta(h),$$

где $\theta(h) \to 0$ при $h \to 0$. Понятно, что для $(x, u_r) = (x_r u)$ в (4.19), непрерывных по $x_r \in X$, мы имеем

$$E | (x, u_{r+h}) - (x, u_r) |^2 \le C ||x_{r+h} - x_r||_X^2 \le$$

$$\le C ||x||_{\mathcal{Z}_2(G)}^2 \theta(h), \quad x \in C_0^{\infty}(G). \quad (4.22)$$

Воспользовавшись предложенной в (1.15) конструкцией, для $u \in \mathring{\mathbf{W}}_2^{(l,m)}(T)$ как обобщенной функции $u = (q,u), \ q \in C_0^\infty(T),$ можно дать представление в виде соответствующего интеграла

$$(\varphi, u) = \int \varphi_r u_r \, dr, \tag{4.23}$$

где, как и выше, φ_r получаются из $\varphi = \varphi(s, r)$ фиксацией переменного r, а $\varphi_r u_r = (\varphi_r, u_r)$ есть результат апробации следа u_r с помощью пробной $\varphi_r = x \in C_0^\infty(G)$. Действительно, мы знаем, что при условиях (4.21), (4.22) взятый справа в (4.23) интеграл задает обобщенную случайную функцию $u = (\varphi, u)$ типа случайного процесса $u = u_r$, и остается лишь пояснить, что как функция пе-

ременного r след $u=u_r$ задает соответствующую функцию $u\in \mathring{\mathbf{W}}_2^{(l,m)}(T)$. Это можно сделать, например, обратившись к представлению пробной $\phi\in C_0^\infty(T)$ как элементу в $X=\mathring{W}_2^{-(l,m)}(T)$ в виде интеграла

$$\varphi = \int \varphi_r \delta_r \, dr$$

от непрерывной в X функции $\varphi_r\delta_r$ переменного r, что для элемента $x \in \mathring{\mathbf{W}}_2^{(l,m)}(T)$ дает

$$(\varphi, u) = \int (\varphi_r \delta_r, u) dr = \int (\varphi_r, u_r) dr.$$

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ для обобщенных случайных функций

Обобщенные дифференциальные уравнения

1° Пробные функции для операторных уравнений. Действие дифференциального оператора $L=\sum a_k\partial^k$ (ска-

жем. с бесконечно дифференцируемыми коэффициентами)

на обобщенные функции $u=(\varphi,u), \ \varphi\in \mathcal{D}=C_0^\infty(T),$ в области $T\subseteq R^d$ определяет соответствующие $Lu=(\varphi,u)$ Lu), $z \in \mathcal{D}$, формулой

$$(\varphi, Lu) = (L*\varphi, u)$$

с оператором

$$L^*\varphi = \sum (-1)^{|h|} \partial^h (a_h \varphi), \quad \varphi \in \mathcal{D};$$

понятно, что это дает $Lu=\sum a_k \partial^k u$ на гладких функциях $\{$ скажем, на $u \in \mathcal{D}\}$. Рессмотрим уравнение

$$Lu = f, (1.1)$$

где правая часть как обобщенная функция $f = (\varphi, f)$ характеризуется пепрерывностью относительно пробных $\phi \in \mathcal{D}$ по норме $\|\phi\|_F$ в некотором гильбертовом пространстве F (например, в $F = \mathcal{L}_2$); обозначим $\mathbf{F} \ni f$ класс таких функций и обратимся к вопросу о выборе соответствующего функционального класса $\mathbf{W} \ni u$.

Обобщенные функции в (1.1) могут быть со значениями в гильбертовом пространстве (в частности, это могут быть скалярные функции), но в большей степени нас будут интересовать обобщенные случайные функции со значениями в известном нам гильбертовом пространстве $H = \mathcal{L}_2(\Omega)$ на вероятностиом Ω .

Уравнение (1.1) в области $T \subseteq R'$ означает, что

$$(L^*\varphi, u) = (\varphi, f)$$
 (1.1)'

для всех пробпых $\varphi \in \mathcal{D} = C_0^{\infty}(T)$. Согласно (1.1) с $f \in \mathbf{F}$, непрерывность $f = (\varphi, f)$ по $\|\varphi\|_{\mathbf{F}}$ вносит в определение $\mathbf{W} \ni u$ непрерывность u = (x, u) относительно пробных $x = L \varphi$ по $\|x\| = \|\varphi\|_F$. Допустим, $F \supseteq \mathcal{D}$ есть гильбертово пространство обобщенных функций $(F \subseteq \mathcal{D}^*)$, в котором сходимость $g_n \to g \subseteq F$ влечет (слабую) сходимость $g_n \to g$ в \mathcal{D}^* , а вместе с этим и слабую сходимость обобщенных функций $L^*g_n \to L^*g$ в \mathcal{D}^* ,

$$(\varphi, L^*g_n) = (L\varphi, g_n) \rightarrow (L\varphi, g) = (\varphi, L^*g), \quad \varphi \in \mathcal{D}.$$

Обратимся к замыканию $[\mathcal{D}]$ в F и, чтобы не вводить новых обозначений, будем считать $[\mathcal{D}] = F$.,

В уравнении (1.1)-(1.1)' нам фактически дапа функция f=(g, f) с пробными $g \in F$, непрерывная по норме $\|g\|_F$ — мы имеем в виду непрерывное продолжение исходной функции $f=(\varphi, f), \ \varphi \in \mathcal{D},$ на замыкание $[\mathcal{D}]=F$. При этом для каждого $g=\lim \varphi$ и соответствующего $x=L^*g=\lim L^*\varphi$ в \mathcal{D}^* формула (1.1)' определяет предел

$$(x, u) \equiv \lim_{x \to 0} (L * \varphi, u) = \lim_{x \to 0} (\varphi, f) = (g, f).$$

который можно интерпретировать как результат апробирования функции $u \in W$ с помощью обобщенной пробной функции $x \in \mathcal{D}^*$. Такая интерпретация вносит в определение $W \ni u$ идентичность значений (x, u) = (g, f) для различных $g = \lim \varphi$ в F с одним и тем же $x = L^* \varphi = \lim L^* \varphi$ в \mathcal{D}^* — уточним, рассматривая здесь $x \in \mathcal{D}^*$ как обобщенные функции

$$x = (\varphi, x), \quad \varphi \in \mathcal{D} = C_0^{\infty}(T),$$

мы не делаем различия между функциями, совпадающими в области $T \subseteq R^d$, и, согласно предложенной интерпретации значений $(x, u) = \lim_{x \to \infty} (L^*\varphi, u)$, в частности. должно быть (x, u) = 0 при $x = L^*g$ с

$$(\varphi, L^*g) = (L\varphi, g) = 0, \quad \varphi \in \mathcal{D}.$$

В рамках этого подхода уравнение (1.1) описывает функцию u = (x, u) с помощью обобщенных пробных $x \in L^*F$ как

$$(L*g, u) = (g, f), g \in F.$$
 (1.2)

Поиятно, что это равенство накладывает на его правую часть дополнительное требование, состоящее в том. что (g, f) = 0 при $L^*g = 0$ в \mathcal{D}^* . Ядро оператора $L^*: F \to \mathcal{D}^*$ является замкнутым подпространством в гильбертовом F, так что, взяв ортогональное к нему дополнение F в F

и проекцию $\overset{\circ}{g}$ на $\overset{\circ}{F}$ произвольного $g \in F$ с $L * g = L * \overset{\circ}{g},$ получим, что

$$(g, f) \equiv (\stackrel{\circ}{g}, f), \quad g \in F,$$

должна быть непрерывной относительно $\|\mathring{g}\|_F \leqslant \|g\|_F$; обладающие этим ограничительным свойством функции $f \in \mathbf{F}$ объединим в подкласс $\mathring{\mathbf{F}} \subseteq \mathbf{F}$ (понятно, что для невырожденного оператора L^* мы имеем $\mathring{\mathbf{F}} = \mathbf{F}$). Обратимый оператор L^* : $\mathring{F} \to \mathcal{D}^*$ нереносит гильбертову норму в F на пространство

$$X = L^*F = L^*\mathring{F} \subseteq \mathcal{D}^*, \tag{1.3}$$

и можно сказать, что описываемая уравнениями (1.1), (1.2) функция u=(x, u) непрерывна относительно пробных $x\in X$ по норме

$$\|x\|_{\scriptscriptstyle X} = \|\mathring{g}\|_{\scriptscriptstyle F}, \quad x = L^* \mathring{g}, \quad \mathring{g} \in \mathring{F}.$$

Как мы увидим в дальнейшем, во многих важных случаях появляющееся в связи с уравнением (1.4), (4.2) гильбертово пространство (1.3) есть пространство пробных обобщенных функций известного нам типа, в общей форме введенное в схеме (1.2)-(1.7) гл. I; именно так будет в случае, когда характеризующее правую часть (1.1) гильбертово пространство $F \subseteq \mathcal{D}^*$ таково, что величина

$$\|\varphi\|_{W} = \sup_{\Gamma_{g''_{F} \leqslant 1}} |(L\varphi, g')| \tag{1.1}$$

конечна при всех $\varphi \in \mathcal{D}$ и непрерывна в пространстве $\mathcal{D} = C_0^\infty(T)$ — она-то и определяет $W = [\mathcal{D}]$, $X = BW = W^*$ в рамках уномянутой схемы (на это фактически уже было указано при рассмотрении пространств с воспроизводящим ядром). Мы знаем, что для пирокого класса таких пространств X (типа W) справедливо вложение

$$\mathscr{D} \subseteq X = L^*F; \tag{1.5}$$

понятно, что в этом случае предельная формула (1.2). определяющая функцию u=(x,u) на всех пробных $x\in X$, полностью определяет ее как обобщенную функцию

$$u = (x, u), \quad x \in \mathcal{D} = C_0^{\infty}(T),$$

и здесь естественно ввести связанный с уравнением (1.1) функциональный класс $\mathbf{W} \ni u$ условнем непрерывности составляющих его обобщенных функций $u = (\varphi, x)$, $\varphi \in \mathcal{D}$, относительно пормы $\|\varphi\|_x$ в X, что дает известное уже нам пространство \mathbf{W} . Напомним, что вложение (1.5) будет иметь место, например, при условии

$$|| \varphi ||_{W} \geqslant c \int_{T_{10c}} |\varphi| dt, \quad \varphi \in \mathcal{D}.$$
 (1.5)

для каждой ограниченной области $T_{loc} \subseteq T - c \mathbf{M}$. (2.6) гл. I.

Отметим. что при рассмотрении уравнения (1.1), (1.1)' для функций $u \in W$, определяемых с помощью соответствующих пробных $x \in X$ как u = (x, u), вовсе не обязательно требовать, чтобы коэффициенты оператора $L = \sum a_h \partial^h$ были бескопсчио дифференцируемы.— нужно лишь. чтобы в (1.1), (1.1)' был определен соответствующий сопряженный оператор

$$L^*: \mathscr{D} \to X \subseteq \mathscr{D}^*. \tag{1.6}$$

Подведем итог следующим предложением для случая (1.5) невырожденного оператора

$$L^*: F \to X \subseteq \mathcal{D}^*$$
.

Теорема. При любой правой части $f \in F$ уравнение (1.1) имеет единственное решение $u \in \mathbf{W}$, которое как обобщенная функция $u = (\varphi, u)$ описывается формулой (1.2) с $L^*g = \varphi, \varphi \in \mathcal{D}^*$).

Добавим, в случае вырождения L^* это будет справедливо при $f = \mathbf{F}$. \square

Уже говорилось, что уравнение (1.1) будет нас интересовать в основном, для обобщенных случайных функций $u=\xi\in W$ со значениями в гильбертовом пространстве $H=\mathscr{L}_2(\Omega)$ на вероятностном Ω .

Как мы знаем, обобщенные случайные функции $\xi \in W$ имеют эквивалентную модификацию с реализациями

^{*)} На первый взгляд здесь может показаться странным, что уравнение (1.1) имеет единственное решение $u \in W$ без каких-либо видимых дополнительных условий. Объяснение этому заключается в том, что функции $u \in W$ фактически удовлетворяют и улевым граничным условиям на $\Gamma = \partial T$, имея предельные граничные значения (x, u) = 0 на обобщенных пробных x, $\mathrm{supp} \, x \subseteq \Gamma$.

 $\xi_{\omega} = (\varphi, \xi_{\omega}), \ \varphi \in \mathcal{D}, \$ которые при каждом $\omega \in \Omega$ являются обобщенными функциями $\xi_{\omega} \in \mathcal{D}^*$. Рассматривая уравнение (1.1) со случайными $u = \xi, \ f = \eta$ как уравнение с обобщенными векторными функциями в гильбертовом пространстве $H = \mathcal{L}_2(\Omega)$, одновременно можно рассматривать (1.1) как уравнение для реализаций $u = \xi_{\omega}, \ f = \eta_{\omega} \in \mathcal{D}^*$, а именно, используя для интересующего нас решения $u = \xi \in W$ эквивалентную модификацию с реализациями $\xi_{\omega} \in \mathcal{D}^*$, можно считать, что обобщенная случайная функция представлена модификацией с реализациями $\eta_{\omega} \in \mathcal{D}^*$:

$$\eta_{\omega} = (\varphi, \eta_{\omega}) \equiv (L^* \varphi, \xi_{\omega}), \quad \varphi \in \mathcal{D}.$$

Однако для $\eta \in F$, $\xi \in W$ их реализации будут вне указанных функциональных классов. \square

Рассмотрим два важных для дальнейшего примера, остановившись на действительном случае, чтобы избежать необходимых переходов к комплексно-сопряженным функциям.

Пример. Симметрические положительные операторы в пространствах типа W. Рассмотрим уравнение (1.1) с симметрическим положительным оператором

$$L = L^* = \mathcal{P} \geqslant 0 \tag{1.7}$$

и правой частью $f \in \mathbf{F}$, отвечающей пространству $F = W = [\mathcal{D}]$ с пормой

$$\|\varphi\|_{w} = (\varphi, \mathscr{P}\varphi). \quad \varphi \in \mathscr{D}.$$

Очевидно, что именно эту порму мы получаем в (1.4) с

$$(L\varphi, g) = (\varphi, \mathscr{P}g) = \langle \varphi, g \rangle_w,$$

и пространство пробных обобщенных функций (4.3) для уравнений (4.1), (4.2) есть

$$X = L*F = \mathscr{P}W = BW,$$

отвечающее в схеме (1.2)-(1.7) гл. I пространству W=F с оператором $\mathscr{P}=B$. По поводу певырожденности оператора (1.6) здесь можно сказать, что этот оператор

$$L^* = \mathcal{P} \colon W \to X$$

является унитарным. П

Пример. Операторы в пространстве \mathscr{L}_2 . При $F=\mathscr{L}_2(T)$ в (1.4) мы имеем

$$\|\varphi\|_W = \|L\varphi\|_{\mathscr{C}_2}, \quad \varphi \in \mathscr{D},$$

104

и для уравнения (1.1), (1.2) пространством пробных функций (1.3) служит

$$X = \mathcal{P}W, \quad \mathcal{P} = L*L,$$

отвечающее в схеме (1.2)-(1.7) гл. I пространству $W==[\mathcal{D}]$ с указанной пормой $\|\phi\|_W$, $\phi\in\mathcal{D}$. Рассмотрим это подробнее в применении к уравнению (1.1) для произвольного линейного оператора

$$L: \ \mathcal{D} = C_0^{\infty}(T) \to F = \mathcal{L}_2(T), \tag{1.8}$$

пепрерывного в F относительно сходимости пробных $\varphi \in \mathcal{D}$ в пространстве $\mathcal{D} = C_0^\infty(T)$, с оператором $L^*\colon F \to \mathcal{D}^*$, заданным формулой

$$L^*g = (\varphi, L^*g) = \langle L\varphi, g \rangle_F, \quad \varphi \in \mathcal{D}.$$

Оператор (1.8) является изометрическим на $\mathcal{D} \subseteq W = [\mathcal{D}]$, и можно взять его упитарное замыкание

$$L: W \to \mathring{F} = [L\mathcal{D}] \subseteq F$$
.

где $\overset{\circ}{F}=[L\mathcal{D}]$ как раз есть ортогональное дополнение в $F=\mathcal{L}_2(T)$ к ядру оператора L^* , образованному всеми $g\in F$ с

$$(\varphi, L^*g) = \langle L\varphi, g \rangle_F = 0, \quad \varphi \in \mathcal{D}.$$

Используя связь $\overset{\circ}{g} = Lv$ соответствующих $v \in W$ и $\overset{\circ}{g} \in \mathring{F}$, получаем

$$\langle \varphi, v \rangle_W = \langle L\varphi, Lv \rangle_F = (\varphi, L^*g), \quad \varphi \in \mathcal{D},$$

откуда непосредственно видно, что появившиеся у нас ранее для уравнения (1.1) пробные обобщенные функции

$$x = L * \mathring{g} = (\varphi, L * \mathring{g}), \quad \varphi \in \mathcal{D},$$

есть не что иное, как

$$x = \mathcal{P}v = (\varphi, \mathcal{P}v), \quad \varphi \in \mathcal{D},$$

из пространства $X=BW=\mathscr{P}W$ в схеме (1.2)—(1.7) гл. I с оператором $B=\mathscr{P},\,\mathscr{P}=L^*L,$ для которых

$$\|Bv\|_{_{X}} = \|v\|_{_{W}} = \|Lv\|_{_{F}} = \|\overset{\circ}{g}\|_{_{F}}.$$

Добавим, что невырожденность оператора L^* выражается условием

$$\dot{F} = [L\mathcal{D}] = F. \tag{1.9}$$

Отметим еще, что уравнение (1.1) с оператором L в пространстве $F=\mathscr{L}_2(T)$ для $u\in \mathbf{W}$ сводится к уравнению

$$\mathcal{P}u = f$$

с оператором $\mathscr{P} = L^*L$ и новой обобщенной функцией $f = (\varphi, f)$, получающейся из правой части (1.1) заменой переменного $\varphi \to L\varphi$, $\varphi \in \mathscr{D}$ — она будет непрерывной по норме $\|\varphi\|_W = \|L\varphi\|_F$. Это новое уравнение равносильно исходному уравнению (1.1) в том смысле, что описывает $u \in \mathbf{W}$ с помощью тех же обобщенных пробных

$$x = \mathcal{P}v = \lim \mathcal{P}\varphi \subseteq X$$
,

применение которых дает тот же результат, что и в (1.2) с $g=\stackrel{\circ}{g}=Lv$, представимый как

$$(x, u) = \lim (\mathcal{P}\varphi, u) = \lim (\varphi, f) = (v, f)$$

с помощью новой функции $f = (\varphi, f)$, определенной по непрерывности на всех $v = \lim \varphi$ в пространстве $W = [\mathcal{D}]$. Сказанное здесь фактически повторяет суть предложенного в (1.2) общего подхода к уравнению (1.1), когда в качестве L выступает симметрический положительный оператор \mathcal{P} , а в качестве F— гильбертово пространство $F = W = [\mathcal{D}]$.

2° Некоторые примеры. Проиллюстрируем предложенный общий подход к уравнению (1.1), обратившись к простейшему дифференциальному оператору L=d/dt и уравнению

$$\frac{d}{dt}u = f \tag{1.10}$$

на конечном интервале T = (a, b) с обобщенной правой частью $f = (\varphi, f)$, непрерывной по $\varphi \in C_0^{\infty}(T)$ в пространстве $F = \mathcal{L}_2(T)$.

Для (1.10) соответствующее пространство обобщенных пробных функций *x* есть соболевское пространство

$$X = \mathring{W}_{2}^{-1}(T) = \left[C_0^{\infty}(T) \right],$$

сопряженное к $W = \mathring{W}_{2}^{1}(T)$, т. е. к замыканию $\left[C_{0}^{\infty}(T) \right]$ по норме

$$\|\boldsymbol{\varphi}\|_{\boldsymbol{W}}^2 = \|\boldsymbol{\varphi}'\|_{\boldsymbol{\mathscr{L}}_2}^2 \times \|\boldsymbol{\varphi}\|_{\boldsymbol{\mathscr{L}}_2}^2 + \|\boldsymbol{\varphi}'\|_{\boldsymbol{\mathscr{L}}_2}^2 = \|\boldsymbol{\varphi}\|_1^2,$$

которое состоит из функций

$$u = u(t) = \int_{0}^{t} g'(t) dt, \quad t \in T,$$

с $\mathring{g} \in \mathring{F}$ из подпространства $\mathring{F} \subseteq F = \mathscr{L}_2(T)$, определяемого условием

$$\int_{a}^{b} \mathring{g}(t) dt = \langle 1, \mathring{g} \rangle_{F} = 0.$$

Поясним, что всякая удовлетворяющая этому условию $\overset{\circ}{g} \in C_0^{\infty}(T)$ есть производная от функцип $\phi(t) = \int_0^t \overset{\circ}{g}(t) \, dt$ из $C_0^{\infty}(T)$; в общем случае $\overset{\circ}{g} \in \mathscr{L}_2(T)$ есть предел со-

из $C_0^-(T)$; в общем случае $g \in \mathscr{L}_2(T)$ есть предел соответствующих производных ϕ' от функций $\phi \in C_0^\infty(T)$, а при сходимости $\phi' = L\phi \to g$ в $\mathscr{L}_2(T)$ мы имеем сходимость $\phi \to u$ в W, определяющую $u \in W$ как функцию указанного выше вида.

Как мы знаем, \mathring{F} есть ортогональное дополнение к ядру оператора $L^*=-d/dt$ в $\mathscr{L}_2(T)$, и это показывает, что обобщенное решение уравнения $L^*g=0$ есть постоянная на интервале $t \in T=(a,\ b)$ функция g(t)=c. Пространство $X=\mathring{W}_2^{-1}(T)$ образовано всеми обобщенными функциями

$$x = L * g = -dg/dt$$
, $g \in \mathcal{L}_2(T)$,

факторизованными по норме $\|x\|_X = \|\mathring{g}\|_{\mathscr{L}_2}$, где \mathring{g} есть проекция на подпространство \mathring{F} . Случайные функции $u \in W$ обобщенного переменного $x \in X$, определяемые условнем непрерывности u = (x, u) по норме $\|x\|_X$, можно описать как u = u(t), $t \in T$, взяв полпую в X систему пробных дельта-функций

$$x = \delta_t = \delta(s - t) = L^* \mathbf{1}_{(a,t)}$$

переменного $s \in T$ с параметром $t \in T$, отвечающих полной в $\mathcal{L}_2(T)$ системе индикаторных функций

$$A_A(s) = \begin{cases} 1, & s \in A, \\ 0, & s \notin A \end{cases}$$

 $\mathbf{c} A = (a, t)$, и положив

$$u(t) = (\delta_t, u), \quad t \in T.$$

Отметим, что $\tilde{\mathbf{1}}_{(a,t)} \to 0$ в $\mathscr{L}_2(T)$ при $t \to a, b$ и это дает нулевые грапичные значения

$$u(a) = \lim_{t \to a} u(t) = 0, \quad u(b) = \lim_{t \to b} u(t) = 0$$

граничных точках t = a, b интервала T = (a, b). В уравнении (1.10) обобщенная производная f=du/dtот $u \in \mathbf{W}$ как обобщенной функции

$$u = (x, u), \quad x \in C_0^{\infty}(T) \subseteq X,$$

такова, что

$$f = (\varphi, f) = (\mathring{\varphi}, f), \quad \varphi \in C_0^{\infty}(T);$$

и с сохрапением этого равенства $f=(\varphi,\ f)$ продолжается по непрерывности на все $\varphi\in F=\mathscr{L}_2(T)=$ $=\left[C_{0}^{\infty}\left(T
ight)
ight] ;$ такое продолжение, в частности, дает нам $(\mathbf{1}_{(a,t)}, f) = (L * \mathbf{1}_{(a,t)}, u) = (\delta_t, u) = u(t),$

$$(1_{(a,t)}, f) = (L^{-1}(a,t), u) = (0_t, u) = u(t),$$

функцию $u \in \mathbf{W}$ по $f = Lu$. Обратившись к иш-

определяя функцию $u \in \mathbf{W}$ по f = Lu. Обратившись к иштегральному представлению

$$(\varphi, f) = \int \varphi(t) f(t) dt, \quad \varphi \in \mathcal{L}_2(T),$$

в котором для обобщенной случайной функции f используется отвечающий ей стохастический интеграл, единственное решение $u \in W$ уравнения (1.10) можно описать как

$$u(t) = (1_{(a,t)}, f) = \int_a^t f(s) ds, \quad t \in T. \quad \Box$$

Указанное здесь интегральное представление описывает функции $u \in W$ для уравнения (1.10) и на бесконечном $T = (a, \infty)$, причем с тем дополнением, что $f = (\varphi, f)$ может быть произвольной обобщенной функцией, непрерывной по $\phi \in F = \mathscr{L}_2(T)$ — дело в том. что оператор $\hat{L}^* = -d/dt$ является невырожденным

 $\mathscr{L}_2(a, \infty)$ и мы имеем $\mathring{F} = F$. Поясним: обобщенное решение уравнения $L^*g=0$ на каждом конечном интервале a < t < b, как мы знаем, есть постоянная g(t) = c, и лишь g(t)=0 входит в пространство $F=\mathcal{L}_2(T)$ в случае бесконечного $T=(a,\infty)$. Взяв в уравнении (1.10) в качестве $f=\eta$ — гауссовский белый шум $\eta=(q,\eta)$ с нулевым средним и

$$E[(\varphi, \eta)]^2 = \|\varphi\|_{\mathscr{L}_{\mathfrak{d}}}^2, \quad \varphi \in C_0^{\infty}(T),$$

как единственное решение $u = \xi \in \mathbf{W}$, получим случайный процесс $u(t) = \xi(t)$, $t \ge a$, представляющий хороно известное броуновское движение, связанное с белым, нумом стохастическим интегралом Ито

$$\int \varphi(t) d\xi(t) = (\varphi, \eta) = \int \varphi(t) \eta(t) dt. \quad \varphi \in \mathcal{L}_2(T). \quad \Box$$

Как уже отмечалось в общем случае, уравнение (4.10) для $u \in \mathbf{W}$ равносильно соответствующему уравнению

$$-\frac{d^2}{dt^2}u = f \tag{1.11}$$

с новой правой частью, получающейся из исходной применением сопряженного оператора $L^*=-d/dt$. Поясним здесь этот факт тем, что свойство непрерывности функций $u=(x,\ u)$ по $x\in X$ дает

$$E |u(t)|^2 = E |(\delta_t, u)|^2 \leqslant C ||1_{(a,t)}||^2_{\mathscr{Z}_2} = C(t-a), \quad t \geqslant a.$$

В результате применения оператора $L^*=-d/dt$ белый шум на \mathcal{L}_2 переходит в белый шум $\eta=(\phi,\ \eta)$ на соответствующем пространстве W типа $\mathring{W}_2^1(T)$ с

$$E | (\varphi, \eta)|^2 = \|\varphi\|_W^2 = \|\varphi'\|_{\mathscr{Z}_2}^2$$

и с его помощью броуповское движение представляется как единственное решение $u=\xi\in \mathbf{W}$ уравнения (1.11) при $f=\eta$ на полупрямой $T=(a,\infty)$.

Та же модель (1.11) на конечном интервале T==(a,b) дает в качестве $u=\xi$ хорошо известный броуновский мост $\xi(t)$, $a\leqslant t\leqslant b$,—с тем же распределением вероятностей, как и у броуновского движения при условии

$$\xi(a) = \xi(b) = 0.$$

Уточним: решение $u=\xi\in \mathbf{W}$ рассматриваемого уравнения (1.11) на интервале $T=(a,\ b)-\mathbf{c}$ белым шумом $f=\eta$ на соответствующем $W-\mathbf{c}$ вязано с удовлетворяющим тому же уравнению броуновским движением $u=\xi_0$

равенством

$$\xi(t) = \xi_0(t) - \frac{t-a}{b-a}\xi_0(b), \quad a \leqslant t \leqslant b. \quad \Box$$

Во многом аналогичным уравнению (1.10) является уравнение

$$\frac{\hat{\sigma}^2}{\partial t_1 \, \partial t_2} u = f \tag{1.12}$$

с переменным $t=(t_1,\ t_2)$ на плоскости — мы рассмотрим его в области $T=(a_1,\ \infty)\times(a_2,\ \infty)$. Применим наш общий подход к этому уравнению с оператором $L=\partial^2/\partial t_1\,\partial t_2$ в случае $F=\mathscr{L}_2(T)$. Отметим сразу же, что оператор $L^*=\partial^2/\partial t_1\,\partial t_2$ является невырожденным, поскольку для обобщенного решения $g\in\mathscr{L}_2(T)$ уравнения $L^*g=0$, согласно равенству

$$(L\varphi, g) = \int_{a_{1}}^{\infty} \int_{a_{2}}^{\infty} \varphi_{1}'(t_{1}) \varphi_{2}'(t_{2}) g(t) dt_{1} dt_{2} = 0$$

со всевозможными пробными $\mathfrak{q}=\mathfrak{q}_1 \times \mathfrak{q}_2 \in C_0^\infty(T)$, мы имеем функцию

$$g_1(t_1) = \int_{a_2}^{\infty} \varphi_2'(t_2) g(t) dt_2 = 0$$

единственным решением в $\mathscr{L}_2(T_1)$ обобщенного уравнения $dg_1/dt_1=0$ на бесконечном $T_1=(a_1,\,\infty)$, и, как следствие, $g(t_1,\,t_2)=0$ есть единственное решение в $\mathscr{L}_2(T_2)$ обобщенного уравнения $dg/dt_2=0$ на бесконечном $T_2==(a_2,\,\infty)$. Это позволяет заключить, что пространство пробных функций X для уравнения (1.12) образовано всеми обобщенными

$$x = L^*g = \frac{\partial^2 g}{\partial t_1} \frac{\partial t_2}{\partial t_2}, \quad g \in \mathcal{L}_2(T),$$

с нормой $\|x\|_X = \|g\|_{\mathscr{Z}_2}$. Очевидно, что оператор $L = \frac{\partial^2}{\partial t_1} \frac{\partial t_2}{\partial t_2}$ принадлежит к указанлому в (2.6) гл. I типу, и мы имеем $C_0^\infty(T) \subseteq X$, $X = \begin{bmatrix} C_0^\infty(T) \end{bmatrix}$. В нашей общей схеме (1.2) - (1.7) гл. I пространство X является сопряженным к $W = \begin{bmatrix} C_0^\infty(T) \end{bmatrix}$ — замыканию всех $u \in C_0^\infty(T)$ по норме

$$\|u\|_{W} = \|g\|_{\mathscr{L}_{2}^{\bullet}}, \quad g = \partial^{2}u/\partial t_{1}\partial t_{2},$$

которое состоит из функций вида

$$u(t) = \int_{a_1}^{t_1} \int_{a_2}^{t_2} g(s) ds, \quad g \in \mathcal{L}_2(T):$$

понятио, что это интегральное представление описывает единственное решение $u \in W$ уравнения (1.12) с данной правой частью $f = g \in \mathcal{L}_2(T)$. В той же форме можно представить решение $u \in W$ этого уравнения с обобщенной случайной $f = (\varphi, f)$, непрерывной относительно $\varphi \in F = \mathcal{L}_2(T)$, обратившись к соответствующему стохастическому интегралу

$$u(t) = \int_{a_1}^{t_1} \int_{a_2}^{t_2} f(s) ds$$

по стохастической мере, символически представленной как f(s)ds и на ограниченных лебеговских $A \subseteq T$ принимающей значения, определенные с помощью индикаторных функций как

$$\int_{A} f(s) ds = (1_{A}, f).$$

Уточним: функция u=(x, u) обобщенного переменного $x \in X = \begin{bmatrix} C_0^\infty(T) \end{bmatrix}$ может быть описана с помощью полной в X системы пробных дельта-функций

$$x = \delta_t = \delta(s - t) = L^*1_A, \quad A = (a_1, t_1) \times (a_2, t_2),$$

как $u(t) = (\delta_t, u), t \in T$. Из приведенного интегрального представления для $u \in W$ видно, что при $t_1 \to 0, t_2 \to 0$ имеются нулевые граничные значения

$$u(0, t_2) = \lim_{t_1 \to 0} u(t_1, t_2) = 0, \quad u(t_1, 0) = \lim_{t_0 \to 0} u(t_1, t_2) = 0.$$

Взяв в уравнении (1.12) в качестве $f=\eta$ гауссовский белый шум $\eta=(\phi,\ \eta),\ \phi\in F=\mathscr{L}_2(T),$ как единственное решение $u=\xi\in W$, получим случайную функцию

$$\xi(t) = \int_{a_1}^{t_1} \int_{a_2}^{t_2} \eta(s) \, ds, \quad t \in T,$$

представляющую с помощью указанного стохастического интеграла так называемое еинеровское поле (известное-

еще как *броуновский лист*) с нулевыми граннчными значениями

$$\xi(0, t_2) = 0, \quad \xi(t_1, 0) = 0.$$

Отметим, что с помощью введения «пространственного» переменного $s=\frac{1}{\sqrt{2}}\left(t_1-t_2\right)$ и «времени» $r=\frac{1}{\sqrt{2}}\left(t_1+t_2\right)$ уравнение (1.12) переходит в волновое уравнение

$$\frac{\hat{\sigma}^2 u}{\partial r^2} - \frac{\hat{\sigma}^2 u}{\partial s^2} = j \tag{1.12}$$

в ограниченной его характеристиками $s=\pm r$ новой области T, при «белом шуме» $f=\eta$ определяя там соответствующее винеровское поле как единственное решение $u=\xi\equiv W$, которое совпадает с решением известной задачи Гурса для уравнения (1.12) с нулевыми данными на характеристиках*). \square

Обратимся к уравнению

$$\Delta u = f \tag{1.13}$$

с оператором Лапласа $\Delta = \partial^2/\partial t_1^2 + \partial^2/\partial t_2^2 + \partial^2/\partial t_3^2$ в области $T = R^3 \setminus \{0\}$ переменного $t = (t_1, t_2, t_3)$ с выколотой точкой t = 0, где правая часть $f = (\varphi, f)$ характеризуется непрерывностью по $\varphi \in C_0^\infty(T)$ в пространстве $F = \mathcal{L}_2(T)$. Оператор $L^* = \Delta$ является невырожденным на $\mathcal{L}_2(T)$, поскольку при $L^*g = 0$ в области $T = R^3 \setminus \{0\}$ для $g \in \mathcal{L}_2(R^3)$ обобщенная функция $x = L^*g$ имеет носителем supp $x = \{0\}$ в точке t = 0, преобразование Фурье $x(\lambda) = |\lambda|^2 \tilde{g}(\lambda)$ есть полином и благодаря особенностям $\tilde{g}(\lambda) = |\lambda|^{-2} \tilde{x}(\lambda)$ при $\lambda \to 0$, ∞ мы имеем $\tilde{g} \in \mathcal{L}_2(R^3)$ лишь в случае $\tilde{g} = 0$.

Согласно этому функции $Lu=\Delta u,\ u\in C_0^\infty(T).$ плотны в пространстве $F=\mathcal{L}_2(T)=\mathcal{L}_2(R^3),$ а их преобразования Фурье $\Delta u=|\lambda|^2\tilde{u}\ (\lambda)=\alpha(\lambda)$ плотны в двойственном $\mathcal{L}_2(R^3).$ Используя для $u\in C_0^\infty(T)$ с u(0)=0

^{*)} Отметим, стохастическое волновое уравнение (точнее, «уравнение струны») появлялось в целом ряде работ — см., например, Walsh J. B. An introduction to stochastic partial differential equations // Lecture notes in Math.— 1984.— V. 1180.— P. 226—434.

интегральное представление

$$u(t) = \frac{1}{(2\pi)^{3/2}} \int e^{i\lambda t} \widetilde{u}(\lambda) d\lambda = \frac{1}{(2\pi)^{3/2}} \int \frac{e^{i\lambda t} - 1}{|\lambda|^2} \alpha(\lambda) d\lambda.$$

 $t \subset T$.

(1.14)

в качестве пополнения $\left[C_0^\infty(T)\right]=W$ по норме $\|u\|_{W} = \|\Delta u\|_{\mathcal{L}_{2}} = \|\alpha\|_{\mathcal{L}_{2}},$ получаем в c е функции указанного выше вида с α \in $\in \mathscr{L}_2(R^3)$. Уточним: здесь мы используем изометрию

$$u \leftrightarrow \alpha$$
 и тот факт, что при каждом t функции
$$a_t(\lambda) = \frac{1}{(2\pi)^{3/2}} \frac{e^{i\lambda t} - 1}{|\lambda|^2}, \quad \lambda \Subset R^3,$$

входят в пространство $\mathscr{L}_2(R^3)$, в совокупности по $t \in T$ образуя там полную систему с

образуя там полную систему с
$$\int [a_{t+s}(\lambda) - a_t(\lambda)] \alpha(\lambda) d\lambda =$$

 $= \frac{1}{(2\pi)^{3/2}} \int e^{i\lambda t} \left[\frac{e^{i\lambda s} - 1}{|\lambda|^2} \alpha(\lambda) \right] d\lambda \equiv 0$

лишь при
$$\alpha(\lambda) \equiv 0$$
. Отметим для дальнейшего еще равенство

$$\int |a_t(\lambda)|^2 d\lambda = \frac{1}{(2\pi)^3} \int \frac{|e^{it|\mu_1} - 4|^2}{|\mu|^4} d\mu = \sigma^2 |t|. \quad (1.15)$$
 получающееся ортогональным преобразованием $\lambda \to \mu$ с

получающееся ортогональным преобразованием
$$\lambda \to \mu$$
 с
$$\mu_1 = \lambda_1 \frac{t_1}{|t|} + \lambda_2 \frac{t_2}{|t|} + \lambda_3 \frac{t_3}{|t|}$$

и последующим преобразованием подобия $|t|\mu \to \mu$ с $\sigma^2 = \frac{1}{(2\pi)^3} \int \frac{\left|e^{i\mu_1}-1\right|}{\left|\mu\right|^4} d\mu$. Для оператора $L=\Delta$ выполняется условие невырожденности (2.6) гл. І — скажем., из интегрального представления (1.14) для $u=\varphi \in C_0^\infty$ (T): $\mathbf{c} \ \phi(t) = \int a_t(\lambda) \, \alpha(\lambda) \, d\lambda$ получается, что $\|L\varphi\|_{\mathscr{L}_{2}}\times\|\alpha\|_{\mathscr{L}_{2}}\!\geqslant\!\frac{1}{\sigma^{1/t}}\left|\int\!a_{t}\left(\lambda\right)\alpha\left(\lambda\right)\,d\lambda\right|\!\geqslant\!$ $\geqslant c \mid \varphi(t) \mid, \quad t \in T_{loc},$

в каждой ограниченной области $T_{\rm loc} \subseteq T$, и, согласно этому, пространство обобщенных пробных функций $X \supseteq C_0^\infty(T)$, $X = \begin{bmatrix} C_0^\infty(T) \end{bmatrix}$, уточним: X является сопряженным к описанному выше W и состоит из всех обобщенных функций

$$x = L^*g = \Delta g, \quad g \in \mathcal{L}_2(T),$$

в области T с нормой $\|x\|_X = \|g\|_{\mathscr{L}_2}$. Отметим, что взяв:

$$g(s) = \tilde{a}_t(s) = \frac{1}{(2\pi)^{3/2}} \int e^{i\lambda s} a_t(\lambda) d\lambda, \quad s \in T.$$

в качестве пробных $x = \Delta g$, получим полную в X систему дельта-функций $x = \delta_t = \delta(s-t)$ с параметром $t \in T$; здесь, согласно интегральному представлению (4.14), для $u = \mathfrak{q} \in C_0^\infty(T)$

$$(\varphi, x) = (\Delta \varphi, g) = (\overline{\Delta \varphi}, a_t) = \varphi(t),$$

жиной системы функций $a_t(\lambda)$ в $\mathscr{L}_2(R^3)$ ма

где для полной системы функций $a_t(\lambda)$ в $\mathcal{L}_2(R^3)$ мы имеем полную систему $g_t(s) = \tilde{a}_t(s)$ в двойственном $\mathcal{L}_2(R^3) = \mathcal{L}_2(T)$ и соответственно полную систему $\delta(s-t) = \Delta g(s)$ в $X = L^*\mathcal{L}_2(T)$ с унитарным

$$L^* = \Delta$$
: $F = \mathcal{L}_2(T) \to X$.

Интегральное представление (1.14) показывает, как функция $u \in W = \begin{bmatrix} C_0^\infty(T) \end{bmatrix}$ восстанавливается по обобщенной $f = \Delta u$ с помощью преобразования Фурье $\tilde{f} = \alpha \in \mathcal{L}_2(R^3)$. Аналогичным образом дело обстоит с обобщенными случайными $u \in W$, которые определяются как u = (x, u) пробными $x \in X = \begin{bmatrix} C_0^\infty(T) \end{bmatrix}$ и с помощьюно л н о й в X системы пробных $x = \delta_t$ могут быть описаны как функции $u(t) = (\delta_t, u), t \in T$, задаваемые с тоха с т и ческим интегральным представлением

$$u(t) = (a_t, \widetilde{f}) = \frac{1}{(2\pi)^{3/2}} \int \frac{e^{i\lambda t} - 1}{|\lambda|^2} \widetilde{f}(\lambda) d\lambda, \quad t \in T,$$

по обобщенной случайной $f=\Delta u$ ее преобразованием Фурье f, где справа указан отвечающий f стохастический интеграл; очевидно, что при $t\to 0$ имеется предельное граничное значение

$$u\left(0\right) = \lim_{t \to 0} u\left(t\right) = 0_{\bullet}$$

Взя в качестве $f=\eta$ гауссовский «белый шум» на $F=\mathscr{L}_2(T)=\mathscr{L}_2(R^3)$, как единственное решение $u=\xi \equiv \mathbf{W}$ уравнения (4.13) получим гауссовскую случайную функцию

$$\xi(t) = (a_t, \widetilde{\eta}) = \frac{1}{(2\pi)^{3/2}} \int \frac{e^{i\lambda t} - 1}{|\lambda|^2} \widetilde{\eta}(\lambda) d\lambda, \quad t \in T,$$

с пулевым граничным значением $\xi(0) = 0$, нулевым средним $E\xi(t) \equiv 0$ и, согласно (1.45).

$$\begin{split} E \mid \xi(t) - \xi(s) \mid^2 &= \int |a_t(\lambda) - a_s(\lambda)|^2 d\lambda = \\ &= \int |a_{t-s}(\lambda)|^2 d\lambda = \sigma^2 |t-s|, \quad s, t \in \mathbb{R}^3; \end{split}$$

случайная функция $\xi = \xi(t)$, $t \in \mathbb{R}^3$, известна как броуновское движение Леви. \square

Рассмотрим уравнение

$$Lu = f \tag{1.16}$$

с имеющим постоянные (действительные) коэффициенты дифференциальным оператором $L = \sum_k a_k \partial^k$ в области $T = R^d$ и обобщенной правой частью $f = (\varphi, f)$, характеризуемой непрерывностью по $\varphi \in C_0^\infty(R^d)$ в пространстве $F = \mathscr{L}_2(R^d)$. Пусть отвечающий оператору $\mathscr{P} = L*L$ полином

$$\mathscr{P}(i\lambda) = L^*(i\lambda)L(i\lambda) = |L(i\lambda)|^2$$

таков, что функция $1/\mathcal{P}=1/\mathcal{P}(i\lambda)$, $\lambda\in R^d$, может служить весовой функцией для соответствующего пространства $\mathcal{L}_{2,1/\mathcal{P}}$ известного нам типа. Тогда, как мы знаем, пространство пробных обобщенных функций $x\in X$ для уравнения (1.16) можно описать с помощью преобразования Фурье условием $\widetilde{x}\in\mathcal{L}_{2,1/\mathcal{P}}$ — напомним, что X является сопряженным к пространству $W=\left[\mathcal{C}_0^\infty\left(R^d\right)\right]$ с нормой

$$\|u\|_{W} = \|Lu\|_{\mathscr{L}_{2}} = \|\widetilde{u}\|_{\mathscr{L}_{2},\mathscr{P}};$$

в частности, X содержит плотное в нем $C_0^{\infty}(R^d)$, $X = [C_0^{\infty}(R^d)]$ — см. (2.16) гл. І. Конечно, оператор $L^* = \sum_k (-1)^k a_k \partial^k$ является невырожденным на $F = \mathscr{L}_2(R^d)$, поскольку для $g \in \mathscr{L}_2(R^d)$ обобщенная функ-

115

ция $L^*g=0$ имеет своим преобразованием Фурье обобщенную функцию $L^*(i\lambda)\tilde{g}(\lambda)=0$ лишь при g=0, и дополнительно можно сказать, что X состоит из всех обобщенных функций $x=L^*g$ с $g\in \mathscr{L}_2(R^d)$, $\tilde{x}(\lambda)=L(-i\lambda)\tilde{g}(\lambda)$, причем

$$\|x\|_{X} = \|g\|_{\mathscr{Q}_{2}} = \|x\|_{\mathscr{Q}_{2,1}/\mathscr{P}} = \left(\int |\widetilde{x}(\lambda)|^{2} \frac{1}{\mathscr{P}} d\lambda\right)^{1/2}.$$

Согласно этому, единственное решение $u \in \mathbf{W}$ уравнения определяется по f = Lu с помощью пробных $x = L^*g \in X$ как

 $u=(x,\ u)=(g,\ f),$ гле, скажем, $g\in \mathscr{L}_2(R^d)$ может быть найдена для данного $x\in X$ с помощью обратного преобразования Фурье функции

$$\tilde{g}(\lambda) = \tilde{x}(\lambda)/L(-i\lambda) \in \mathcal{L}_2(R^d);$$

в частности, взяв здесь $x = \varphi \in C_0^{\infty}(\mathbb{R}^d)$, мы получим решение $u \in \mathbf{W}$ как обобщенную функцию $u = (\varsigma, u)$, $\varphi \in C_0^{\infty}(\mathbb{R}^d)$.

При условил интегрируе мости весовой функции $1/\mathscr{P}$ мы имеем: $1/L(-i\lambda) \in \mathscr{L}_2(R^d)$ и $\widetilde{x}(\lambda) = e^{i\lambda t}$ с параметром $t \in R^d$ образуют в пространстве $\mathscr{L}_{2,1/\mathscr{P}}$ полную систему, для которой соответствующие $x = \delta_t = \delta(s-t)$ образуют полную систему в X, позволяя описать решение уравнения (1.16) как

$$u=u(t)=(\delta_t, u)=(w_t, f)=\int w(t-s)f(s)ds, \quad t\in \mathbb{R}^d,$$

где

$$w_t = w(t-s) = \frac{1}{(2\pi)^{d/2}} \int e^{-i\lambda(t-s)} \frac{1}{L(-i\lambda)} d\lambda, \quad s \in \mathbb{R}^d.$$

а крайнее справа выражение представляет в общем случае с т о х а с т и ч е с к и й интеграл, определяемый по обобщенной с л у ч а й н о й функции $f = (g, f), g \in \mathcal{L}_2(\mathbb{R}^d)$. Взяв здесь в качестве $f = \eta$ б е л ы й ш ум $\eta = (g, \eta), g \in \mathcal{L}_2(\mathbb{R}^d)$, как единственное решение $u = \xi \in \mathbf{W}$ уравнения получим стационарное случайное поле

$$\xi(t) = \int w(t-s) \eta(s) ds, \quad t \in \mathbb{R}^d,$$

с нулевым средним и спектральной плоскостью $1/\mathscr{P} =$

116

 $=1/\mathcal{P}(i\lambda);$ при общей весовой функции $1/\mathcal{P}$ мы нолучим обобщенное стационарное поле

$$(\varphi, \xi) = (g, \eta), \quad \varphi = x \in C_0^{\infty}(\mathbb{R}^d).$$

с указанной спектральной плотностью

$$E||(q,\xi)|^2 = ||g||_{\mathscr{Q}_2}^2 = \int ||\widetilde{q}|(\lambda)|^2 \frac{1}{\mathscr{P}} d\lambda. \quad \Box$$

Аналогичное решение получается для уравнения

$$\mathscr{P}u=f$$
 (1.17) с имеющим постоянные коэффициенты дифференциаль-

ным оператором

$$\mathcal{P} = L = \sum a_k \partial^k \geqslant 0$$

в области $T=R^d$ и обобщенной правой частью $f=(\varphi,f)$, характеризуемой непрерывностью по $\varphi \in C_0^\infty(R^d)$ в соответствующем оператору $\mathscr{P} \geqslant 0$ пространстве $F=W== [C_0^\infty(R^d)]$ с нормой

$$\|\varphi\|_{W} = (\varphi, \mathscr{P}\varphi)^{1/2}.$$

При тех же условиях на

$$1^{j}\mathscr{F}=1/\mathscr{F}(i\lambda), \quad \mathscr{F}(i\lambda)=\sum_{k}a_{k}(i\lambda).$$

что и раньше (с $1/\mathscr{P}$ как весовой функцией можно образовать \mathscr{Z}) в качестве пространства пробных функций $X = \left[C_0^{\infty}(R^d) \right]$ для уравнения (1.17) мы имеем

ций $X = [C_0^\infty(R^n)]$ для уравнения (1.17) мы имеем совокупность всех обобщенных $x, \ x \in \mathcal{L}_{2,1}/\mathscr{P}$, с нормой

$$\|x\|_{X} = \|\widetilde{x}\|_{\mathscr{L}_{2,1}/\mathscr{P}} = \left(\int |\widetilde{x}(\lambda)|^{2} \frac{1}{\mathscr{P}} d\lambda\right)^{1/2}.$$

При этом оператор $\mathcal{P}=L=L^*$ в уравнении (1.17) в применении к функциям $g\in W$ дает в совокупности все пробные $x=\mathcal{P}\,g\in X$ и, в частности, единственное решение $u\in W$ уравнения (1.17) как обобщенная функция $u=(\varphi,u), \ \varphi\in C_0^\infty(R^d),$ определяется по имеющейся в (1.17) обобщенной $f=(g,\ f),\ g\in W,$ формулой

$$(\varphi, u) = (g, f), \quad g = \mathcal{P}^{-1}\varphi,$$

где для преобразований Фурье мы имеем

$$\widetilde{g}(\lambda) = \widetilde{\varphi}(\lambda) / \mathscr{P}(i\lambda), \quad \lambda \subseteq \mathbb{R}^d.$$

Взяв, например, в качестве $f = \eta$ «белый шум» $\eta = (g, \eta)$ на пространстве F = W, как единственное решение $u = \xi \in W$ уравнения (1.17) получим обобщенное стационарное поле

$$(\varphi, \xi) = (g, \eta), \quad \varphi \in C_0^{\infty}(\mathbb{R}^d),$$

с нулевым средиим и спектральной плотностью 1/Р.

$$E \mid (\varphi, \xi) \mid^2 = \|g\|_W^2 = \|\varphi\|^2 = \|\widetilde{\varphi}\|_{\boldsymbol{\mathscr{L}}_{2,1}/\boldsymbol{\mathscr{P}}}^2 = \int |\widetilde{\varphi}(\lambda)|^2 \frac{1}{\boldsymbol{\mathscr{P}}} d\lambda.$$

Уномянем здесь хорошо известное свободное марковское лоле со спектральной илотностью вида $(|\lambda|^2+a^2)^{-1}$, $\lambda \in R$, отвечающее модели (1.17) с $\mathscr{P}=-\Delta+a^2$, где Δ — оператор Лапласа. \square

Коротко остановимся еще на одном примере, к которому мы вернемся в дальнейшем. Рассмотрим параболическое уравпение

$$\frac{\partial u}{\partial r} - Au = f \tag{1.18}$$

в области $T=G\times(a,\infty)$ с «пространственным» переменным $s\equiv G$ и «временем» r>a в $t=(s,r)\equiv T$, где $-A\geqslant 0$ есть ноложительный эллиптический оператор (порядка m) в области $G\subseteq R^{d-1}$, для которого сопряженный к $L=d/\partial r-A$ оператор $L^*=-\partial/\partial r-A$ является невырожденным на пространстве $\mathscr{F}=\mathscr{L}_2(T)$, и оператор $\mathscr{P}=L^*L=-\partial^2/\partial r^2+A^2$ в схеме (1.2)-(1.7) гл. I порождает соболевское $W=\mathring{W}(T)=\mathring{W}_2^p(T)$, p=(m,1), с

$$\|\varphi\|_W^2 = (\varphi, \mathscr{P}\varphi) \times \|\varphi\|_p^2.$$

Пространством обобщенных пробных функций $x \in X$ для уравнения (1.18) с обобщенной правой частью $f = (\varphi, f)$, непрерывной относительно $\varphi \in C_0^\infty(T)$ в $\mathscr{F} = \mathscr{L}_2(T)$, будет соответствующее соболевское

$$X = \mathring{W}_{2}^{-\nu}(T) = \left[C_{0}^{\infty}(T) \right],$$

и имеется едипственное решение $u \in \mathring{\mathbf{W}}_{2}^{p}(T)$ этого уравнения, определяемое согласно предложенному в (1.2) общему подходу. Как мы знаем, обобщенная функция $u = (\varphi, u), \ \varphi \in C_0^\infty(T)$. класса $\mathring{W}_2^p(T)$ на каждом сече-

нин $G \times \{r\}$ области T имеет след

$$u_r = (x, u_r), \quad x \in C_0^{\infty}(G),$$

для которого

$$(\varphi, u) = \int \varphi_r u_r dr,$$

$$-\left(\frac{\partial \varphi}{\partial r}, u\right) = -\int \varphi'_r u_r dr = \int \varphi_r du_r.$$

 ϕ

причем аналогичный интеграл дает и

$$(A\varphi, u) = \int A\varphi_r u_r dr;$$

в правой части (1.18) обобщенную случайную с

наномним, что $\varphi_r \in C_0^{\infty}(G)$ получается из $\varphi = \varphi$ (:, r) фиксацией переменного r > a — см. (1.14) гл. І. Возъмем

где, скажем, $\eta = \eta_r$ есть случайный процесс с непорредированными приращениями

ованными приращениями
$$E \mid (x,\,\eta_{r+h}-\eta_r) \mid^2 \leqslant C \, \|x\|_{\mathscr{L}_2(G)}^2 h, \quad x \in C_0^\infty(G),$$

— как мы знаем, $f = (\varphi, f)$ будет тогда непрерывной по $\varphi \in C_0^\infty(T)$ в $\mathcal{L}_2(T)$ (см. гл. I). Согласно уравнению (1.18), мы имеем

$$\int \varphi_r du_r = \int A\varphi_r u_r dr + \int \varphi_r d\eta_r;$$

взяв здесь $\phi \in C_0^\infty(T)$ вида $\phi(s, r) = x(s) w(r)$ с $x \in C_0^\infty(G)$, получим

 $\int w(r) \, d(x, u_r) = \int w(r) \, (Ax, u_r) \, dr + \int w(r) \, d(x, \eta_r).$ и в итоге, используя предельный переход $w \mapsto 1_{\{r_1, r_2\}}$, получаем

$$(x, u_{r_2}) - (x, u_{r_1}) = \int_{r}^{r_2} (Ax, u_r) dr + \int_{r_1}^{r_2} d(x, \eta_r),$$

что для рассматриваемого случайного процесса $u_r = \xi_r$ можно символически представить с помощью стохасти-

ческих дифференциалов в виде уравнения

$$d\xi_r = A\xi_r dr + d\eta_r.$$

известного как стохистическое уравнение Ито. Включение $u=\xi \in \mathring{\mathbf{W}}_2^p(T)$ для $T=G \times (a,\infty)$ дает начальное значение

$$\xi_a = \lim_{r \to a} \xi_r = 0.$$

(Отметим, что в рамках описываемой стохастическим уравнением Ито теоретико-вероятностной модели случайный процесс $\xi = \xi_r$ рассматривается лишь в его зависимости от времени r > a, оставляя в стороне фактически именщуюся зависимость от пространственного переменного в области $G \subseteq R^{d-1}$, явно выступающую в соответствуещем уравнении (4.18).)

§ 2. Граничные задачи

1° Общие граничные условия для обобщенных дифференциальных уравнений. Обратимся к общему уравнению (1.1) с дифференциальным оператором $L = \sum a_k \sigma^k$ в области $T \equiv R^d$ и обслуживающему (1.1), (1.2) функциональному классу $\mathbf{W} = \mathbf{W}(T)$, в котором решение $u \in \mathbf{W}$ является единственным. Понятно, что, имея дело с уравнением

$$Lu = f \tag{2.1}$$

в той или иной области $S \subseteq T$, уже нельзя гарантировать единственность решения, и возникает вопрос о дополнительных к уравнению (2.1) данных, которые однозначно выделяли бы интересующее нас $u \in W(S)$ в соответствующем функциональном классе W(S), получающемся сужением W в области $S \subseteq T$. Этому вопросу можно придать более точную направленность, имея в виду данные, которые доступны в форме своего рода «граничных условий». скажем, отражающих те или иные условия г не области S (примером здесь могут служить рассматриваемые в дальнейшем задачи прогнозирования*)).

^{*)} Здесь можно было бы сказать об известных задачах математической физики, исследования которых в рамках соответствующих граничных задач определили целые направления в теории дифференциальных уравнений в частных производных.

Используем предложенный в (1.1)-(1.2) общий подход для уравнения (2.1) в области $S\equiv T$. Именио, используя непрерывность правой части $f=(\varphi,\ f)$ по $\varphi \in C_0^\infty(S)$ относительно $\|\varphi\|_{\mathscr{F}}$ и непрерывность h=0

 $\phi \in \mathcal{C}_0$ (3) относительно $\psi \in \mathcal{C}_0$ по $\|x\|_X$, вместе с тобщенным уравнением (2.1) для $u \in \mathbf{W}(S)$ рассмотрим эквивалентное ему уравнение

$$(L*g, u) = (g, f), \quad g \in \mathcal{F}(S), \tag{2.1}$$

с «пробными» $g \in \mathcal{F}(S)$ из замыкания $\mathcal{F}(S) = [C_6^\infty(S)]$ в соответствующем пространстве \mathcal{F} , где указанное $\mathbf{W}(S)$ есть совокупность обобщенных функций u = (x, u) е пробными $x \in X(S)$ из подпространства X(S) обобщенных пробных $x \in X = \mathring{X}(T)$ в замыкании области S = 0 е носителями supp $x \in [S]$. Само уравнение (2.1), (2.1)' дает нам не что иное, как функцию u = (x, u) на люд-пространстве $x \in X^-(S)$,

$$X^{-}(S) = L^{*}\mathcal{F}(S) = \left[L^{*}C_{0}^{\infty}(S)\right] \subseteq X(S). \tag{2.2}$$

Понятно, что дополнительными данными, вместе (2.1), (2.1)' однозначно определяющими $u \in W(S)$, могли бы быть значения (x, u) с пробными $x \in X(S)$ из дополнения к подпространству $X^-(S)$ — скажем, из ортогонального дополнения

$$X(S) \ominus X^{-}(S)$$
.

Оказывается, что это ортогональное дополнение вхедит в граничное пространство $X(\Gamma) \subseteq X(S)$ всех пробных x, ѕирр $x \subseteq \Gamma$, с носителями на границе $\Gamma = \partial S$ области S, и, таким образом, дополнительные данные относительно искомой функции $u \in W(S)$, о которых здесь идет речь, суть ее граничные значения

$$(x, u), \quad x \in X_0^+(\Gamma), \tag{2.3}$$

на указапном граничном подпространстве

$$X_0^+(\Gamma) = X(S) \ominus X^-(S) \subseteq X(\Gamma)$$

пробных x, supp $x \subseteq \Gamma$. Покажем это.

Остановимся сначала на случае оператора L в пространстве $\mathcal{F}=\mathcal{L}_2(T)$, когда пространством пробных функций во всей области $T \supseteq S$ служит

$$X = L^* \mathcal{L}_2(T) = \mathcal{P}W$$

 \mathbf{c} $\mathscr{P}=L^*L$ на соответствующем $W=\mathring{W}(T)=\left[C_0^\infty(T)\right],$ и в (2.1)' мы имеем

$$\mathscr{F}(S) = [C_0^{\infty}(S)] = \mathscr{L}_2(S).$$

Очевидно, что включение $LC_0^\infty(S) \subseteq \mathcal{L}_2(S)$ для замы-кания $\hat{W}(S) = \left[C_0^\infty(S)\right]$ в W дает нам

$$\mathscr{P}\mathring{W}(S) = \left[\mathscr{P}C_0^{\infty}(S)\right] \subseteq L^*\mathscr{L}_2(S) = X^-(S) \subseteq X(S).$$

где в пространстве X(S) всех обобщенных пробных $x \in X$, $\sup_{\Gamma} x \subseteq [S]$, граничные $x \in X(\Gamma)$ с носптелями $\sup_{\Gamma} x \subseteq \Gamma$ на границе $\Gamma = \partial S$ выделяются условием $(\varphi, x) = \langle \mathscr{P}_{\varphi}, x \rangle_X = 0$, $\varphi \in C_0^{\infty}(S)$,

опи: ывающим граничное
$$X(\Gamma)$$
 как ортогональное до-

опи: ывающим граничное X(1) как ортогональное дополнение в X(S) к подпространству $\mathscr{P}W(S)$,

$$X(S) = \mathscr{P}\mathring{W}(S) \oplus X(\Gamma)$$
(2.4)

 $X(S) = \mathcal{P}W(S) \oplus X(\Gamma)$ (2.4) — эм. по этому поводу (1.7), (2.4) гл. І. Согласно (2.4),

в оргогональном разложении

$$X^{-}(S) = \mathscr{P}\overset{\circ}{W}(S) \oplus X^{-}(\Gamma)$$

ортогопальное дополнение к $\mathscr{P}\mathring{W}(S)$ в $X^-(S) = L^*\mathscr{L}_2(S)$ есть

$$X^{-}(\Gamma) = X(\Gamma) \cap X^{-}(S) = X(\Gamma) \cap L^{*}\mathscr{L}_{2}(S), \qquad (2.5)$$

а ортогональным дополнением к $X^-(S)$ в X(S) является ортогональное дополнение

ортогональное дополнение
$$X_0^+(\Gamma) = X(\Gamma) \ominus X^-(\Gamma) \tag{2.6}$$

 $X_0^{\scriptscriptstyle \mathrm{T}}(\Gamma) = X(\Gamma) \ominus X^{\scriptscriptstyle \mathrm{T}}(\Gamma) \tag{2.6}$

к $X^-(\Gamma)$ в $X(\Gamma)$. Оставшийся перассмотренным случай оператора $L=L^*=\mathcal{P}\geqslant 0$ в соответствующем пространстве $\mathcal{F}=W=$

 $=\mathring{W}\left(T
ight)$ еще проще; именно, здесь мы имеем $\mathscr{F}\left(S
ight)=\mathring{W}\left(S
ight)=\left[C_{m{0}}^{\infty}\left(S
ight)
ight],$

$$X^{-}(S) = L^{*}\mathcal{F}(S) = \left[L^{*}C_{0}^{\infty}(S)\right] = \mathcal{P}\hat{W}(S).$$

и ортогональное дополнение к пробным $x \in X^-(S)$,

122

согласно общему ортогональному разложению (2.4), есть

$$X_0^+\left(\Gamma\right) := X\left(\Gamma\right),$$
 (2.7) т. е. все граничное пространство $X\left(\Gamma\right)$. \square

В общем случае мы имеем ортогональную сумму

$$X(S) = X^{-}(S) + X_{0}^{+}(\Gamma).$$
 (2.8)

(2.3), а именно, задав произвольно липейную непрерывную функцию $u=(x, u), x \in X_0^+(\Gamma)$, на граничном нодиространстве $X_0^+(\Gamma) \subseteq X(\Gamma)$ и имея заданную уравнением (2.1), (2.1)' функцию $u=(x, u), x \in X^-(S)$, в совокупности мы однозначно определим липейную функцию u=(x, u) при всех $x \in X(S)$ как

Попятно задав произвольно граничные значения

$$(x, u) = (x^-, u) + (x^+, u)$$

при разложении $x = x^- + x^+$ на компоненты $x^- \in X^-(S)$, $x^+ \in X^+(\Gamma)$. \square Приведем следующее очевидное предложение: система граничных пробных $x \in X^+(\Gamma)$ является полной в $X(\Gamma)$

тогда и только тогда, когда уравнение

$$\mathcal{P}u=0$$
 в области $T \ \Gamma$ с граничными условиями

$$(x, u) = 0, \quad x \in X^+(\Gamma),$$

имеет единственное решение $u\in W$ (т. е. u=0). Поясним, что это относится как к случаю $\mathscr{P}=L=L^*\geqslant 0$ на $\mathscr{F}=W=\mathring{W}(T)$, так и к случаю $\mathscr{P}=L^*L$ с оператором L на $\mathscr{F}=\mathscr{L}_2(T)$. Отметим, что в силу общего представ-

ления $X = L^*\mathcal{F}$ (см. (1.5)) граничные $x \in X(\Gamma)$ могут быть описаны как $x = L^*g$ с $g \in \mathcal{F}$, удовлетворяющими однородному сопряженному уравнению

$$L*g = 0 (2.9)$$

в дополнительной к границе области $T \setminus \Gamma$. При этом в случае $\mathcal{F} = \mathcal{L}_2(T)$, когда от решения уравнения (2.9) не требуется даже непрерывности на границе $\Gamma = \partial S$, его можно «разрезать» по Γ , выделив отдельно решения с $g = g^- \in \mathcal{L}_2(S)$, $L^*g^- = 0$ в S и $g^- = 0$ в дополнении $S^c = T \setminus S$, и с $g = g^+ \in \mathcal{L}_2(S^c)$, $g^+ = 0$ в S и $L^*g^+ = 0$ в дополнительной к S области $S^+ = T \setminus [S]$; здесь граничные $x = L^*g^-$ в совокупности образуют $X^-(\Gamma)$, а состав-

ляющие дополнение к ним граничные $x=L^*g^+$ в случае невырожденного L^* образуют ортогональное дополнение X_0^+ (Γ) — напомним, что невырожденный оператор

$$L^*: \mathcal{F} = \mathcal{L}_2(T) \rightarrow X = L^*\mathcal{F}$$

является унитарным оператором.

□

Говоря о граничных условиях на обобщенное решение $u \equiv \mathbf{W}(S)$ уравнения (2.4), которое в нашей схеме есть обобщенная функция u = (x, u) функционального переменного $x \equiv X(S)$, естественно понимать их как условия на те или иные граничные значения (x, u), supp $x \equiv \Gamma$, па границе $\Gamma = \partial S$ области S, скажем, как условия, задающие граничные значения

$$(x, u) = (x, u^+), \quad x \in X^+(\Gamma),$$
 (2.10)

для произвольной совокущисти $X^+(\Gamma)$ обобщенных гравичных $x \in X(\Gamma)$, и при таком подходе можно сказать, что выбор $X^+(\Gamma) \subseteq X(\Gamma)$ определяет тип граничных условой (2.10). В дальнейшем при рассмотрении конкретсых примеров мы в рамках этого подхода встретимся со многими известными в теории дифференциальных ураепений граничными условиями. Отметим, что в (2.10) речь пдет о линейной непрерывной функции u = (x, v) функционального переменного x, и задание ее значений в точках $x \in X^+(\Gamma)$ определяет ее на их замкнутей линейной оболочке; согласно этому можно считать, что $X^+(\Gamma)$ есть под пространство в граничном $X(\Gamma)$, а в (2.10) задаются граничные значения (x, u) на какой-лыбо пол ной с и с теме $x \in X^+(\Gamma)$ в граничном $no\partial np$ остранстве $X^+(\Gamma) \subseteq X(\Gamma)$.

Как уже фактически отмечалось, некоторые граничные значения удовлетворяющей уравнению (2.1) функции $u \in \mathbf{W}(S)$ определяются самим уравнением, а иманию это значения

$$(x, u), x \in X^{-}(\Gamma),$$

ответающие в схеме с общим оператором L в пространстве $\mathcal{F}=\mathcal{L}_2(T)$ пробпым

$$x \in X^{-}(S) = [L^*C_0^{\infty}(S)] = L^*\mathcal{L}_2(S)$$

с но этелями $\mathrm{supp}\,x\subseteq\Gamma$ на границе $\Gamma=\partial S$ (см. (2.5)); уточним: при этих $x=L^*g$, согласно (2.1), (2.1)

$$(x, u) = (g, f),$$
 (2.11)

где соответствующие $g \in \mathcal{L}_2(S)$, g = 0 вне S могут быть описаны сопряженным уравнением

$$L^*g = 0 \tag{2.12}$$

в самой области S. Таким образом, если в граничных условиях (2.40) речь идет о той же функции $u \in W(S)$, что и в уравнении (2.1), то должно быть

$$(x, u^+) = (g, f), \quad x = L^*g,$$
 (2.13)

для тех пробных $x \in X^+(\Gamma)$ на (2.40), что задействочаны также в (2.4)', т. е. для

$$x \in X^+(\Gamma) \cap X^-(\Gamma)$$
;

более того, должно быть

$$(x, u^+) - (g, f) \to 0$$
 (2.13)

для тех $x \in X^+(\Gamma)$ из (2.10), что сближаются с какимито пробными L^*g из (2.1)'.

$$||x - L * g||_X \to 0.$$

В (2.13), (2.13) выражена необходимая согласованность граничных условий (2.10) с уравнением (2.1). Очевидно, что вопрос об этой согласованности не везынкает для граничных условий (2.10) произвольного типа $X^+(\Gamma)$ с граничным подпространством $X^+(\Gamma) \subseteq X(\Gamma)$, составляющим и рям у ю сумму

$$X(\Gamma) = X^{-}(\Gamma) + X^{+}(\Gamma), \qquad (2.14)$$

когда $X^+(\Gamma)$ является прямым дополнением к $X^-(S) = \begin{bmatrix} L^*C_0^\infty(S) \end{bmatrix}$ в

$$X(S) = X^{-}(S) + X^{+}(\Gamma)$$
 (2.14)

— понятно, что n p o u s s o n b h o заданные граничные условия (2.10) этого типа $X^+(\Gamma)$ являются согласованными с уравнением (2.1), поскольку в (2.13) речь может идти лишь об x=0, а в (2.13)'- лишь об $x\to 0$. Тем более вопрос о согласованности не возникает в случае уравнения (2.1) с оператором $L=L^*=\mathscr{P}\geqslant 0$ в отвечающем ему пространстве $\mathscr{F}=W$, когда

$$X^-(\Gamma) = X(\Gamma) \cap X^-(S) = 0$$

 $- c_{\underline{M}}$. (2.7).

Назовем граничные условия (2.10) *полными*, если $x \in X^{\div}(\Gamma)$ дополняют $X^{-}(S) = \begin{bmatrix} L^*C_0^{\infty}(S) \end{bmatrix}$ до полной

системы в пространстве X(S) всех пробных функций x, supp $x \subseteq [S]$.

Справедливо следующее предложение.

Теорема. Произвольно заданные граничные условия (2.10) определяют единственное решение $u \in \mathbf{W}(\check{S})$ уравпения (2.1) тогда и только тогда, когда они являются полными и согласованными с этим уравнением.

Доказательство очевидно: заданную на $x \in X^{-}(S)$ уравнением (2.1), (2.1), а на дополняющих их x = $\in X^+(\Gamma)$ — граничными условиями (2.10) линейную непрерывную функцию u = (x, u) можно единственным образом продолжить на все пространство $x \in X(S)$.

Добавим здесь, что в случае, когда согласованность можно выразить в форме (2.13) с теми вли иными $x=L^*g\in X^+(\Gamma)$, $g\in \hat{\mathscr{L}}_2(S)$, при полноте граничных условий, мы имеем представление всех элементов $x \in X(S)$ в виде прямой суммы

$$x = L^*q + x^+$$

 ϵ соответствующими $\phi \in \mathscr{L}_2(S)$, ортогональными функдиям $g \in \mathcal{L}_2(S)$ из (2.13) и граничными $x^+ \in X^-(\Gamma)$; очевидно, что единственное решение $u \in \mathbf{W}(S)$ общей грацичной задачи (2.1), (2.10) при произвольных граничных условиях такого типа $X^+(\Gamma)$ описывается с номощью пробных $x \in X(S)$ формулой

$$(x, u) = (\varphi, f) + (x^+, u^+).$$
 (2.15)

Добавим еще, что при соотношении эквивалентности

$$\|L^*\varphi\|_X \times \|\varphi\|_{\mathscr{F}}, \ \varphi \in \mathcal{C}_0^{\infty}(S), \tag{2.16}$$

граничная задача (2.1), (2.10) разрешима при любой правой части — любой обобщенной функции f (скажем, со значениями $(\varphi, f) \in H$ в гильбертовом H), непрерывной по $\varphi \in C_0^\infty(S)$ относительно $\|\varphi\|_{\mathscr{F}}$ и, понятно, удовлетворяющей (2.13). Все вместе это в случае условия согласованности (2.13) и соотношения эквивалентности (2.16) приводит нас к следующему предложению.

Теорема. Общая граничная задача (2.1), (2.10)

имеет единственное решение $u \in W(S)$, описываемое фор-

мулой (2.15) с оценкой

$$\sup_{\|x\|_{\mathcal{X}}\leqslant 1}\|(x,u)\|_{H}\leqslant C\left[\sup_{\|\phi\|_{\mathcal{F}}\leqslant 1}\|(\phi,f)\|_{H}+\sup_{\|x+\|_{\mathcal{X}}\leqslant 1}\|(x^{+},u^{+})\|_{H}\right].$$

Отметим, что в частном случае граничных условий типа (2.14), не требующих никакой согласованности (условие (2.13) отсутствует), первое слагаемое в формуме (2.15) представляет решение при однородных (нулевых) граничных условиях (2.10) с $u^+=0$, а второе слагаемое в (2.15) представляет решение однородного урасчения (2.1) с правой частью f=0.

Напомиим. что указапный в (2.14) тип $X^+(\Gamma) = X(\Gamma)$ с танвиальным $X^-(\Gamma) = 0$ только и может быть для операт ра $L = \mathcal{P} \ge 0$ в соответствующем пространстве $\mathcal{F} = W = \hat{W}(T)$.

Для общего оператора L в пространстве $\mathcal{F}=\mathcal{L}_2(T)$ важным примером полных и согласованных с уравпением (2.1) граничных условий (2.10) типа $X^+(\Gamma)$ являются этего внешние граничные условия— под этим мы будем понимать задание граничных $(x,u)=(x,u^+)$ с поможно пробных $x \in X^+(\Gamma)$, которые связаны с соответствующими $g^+ \in \mathcal{L}_2(S^c)$ в не области S и представимы как $r = L^*g^+$ с $g^+ = 0$ в S и $L^*g = 0$ в дополнительной объекти $S^+ = T \setminus [S] - \text{см.}$ (2.9), (2.12); понятно, что в нам-й модели (2.1) с данным f в области T граничные условия этого типа непосредственно связаны с f в не области S равенством

$$(x, u) = (x, u^+) = (g^+, f), \quad x = L^*g^+ \in X^+(\Gamma).$$

Отметим, что здесь в случае невырожденного опература L^* на $\mathcal{F}=\mathcal{L}_2(T)$ мы имеем граничные условия тиса

$$X^{\pm}(\Gamma) := X_0^{\pm}(\Gamma),$$

определяемые на ортогональном дополнении $X_0^+(\Gamma) = X(\Gamma) \ominus X^-(\Gamma) - \mathrm{cm}$. (2.6), (2.8). Выделим специально случай, когда внешние граничные условия являются единственно полными — мы имеем в виду случай. Когда они типа

$$X^+(\Gamma) = X(\Gamma),$$

что отвечает $X^-(\Gamma)=0$, когда в области $S\subseteq T$ кроме тривнального $g\equiv 0$ нет решений $g\in \mathcal{L}_2(S)$ сопряженного уравнения $L^*g=0$ в $S-\mathrm{cm.}$ (2.9), (2.12)*).

^{*)} Это наблюдается для самых различных операторов L в бесконечных областях S.

В нашей общей граничной задаче (2.1), (2.10) в области $S \subseteq T$ само уравнение (2.1) разрешимо (имеет решение) в классе $u \in \mathbf{W}(S)$ тогда и только тогда. Когда правая часть (2.1) задается обобщенной функцией $f = (\varphi, f)$, пепрерывной по $\varphi \in C_0^\infty(S)$ относительно нормы $\|L^*\varphi\|_X$ в соответствующем X(S). При этом

$$\|L^*\mathfrak{q}\|_X = \|\mathfrak{q}\|_{\mathcal{T}}$$

для оператора L в левой части (2.4) в случае $L=L^*=\mathcal{P}>0$ в отвечающем ему пространстве $\mathcal{F}=W=\hat{W}^*(T)$ или. в случае произвольного L, в $\mathcal{F}=\mathcal{L}_2(T)$ с невырожденным L^* , с $\mathcal{F}=\begin{bmatrix}LC_0^\infty(T)\end{bmatrix}=\mathcal{L}_2(T)$: в случае же общего оператора L в $\mathcal{F}=\mathcal{L}_2(T)$ норма

$$\|L^*\phi\|_X=\|\mathring{\phi}\|_{\mathscr{F}}$$

совнадает с нормой ортопроекции φ на нодпространство $\mathring{\mathscr{F}} = [LC_0^\infty(T)]$, и здесь можно дополнительно указать случай общего положения с отличным от 0 углом между $\mathscr{F}(S) = \mathscr{L}_2(S)$ и ортогональным дополнением $\mathscr{F} \ominus \mathring{\mathscr{F}}$ (ядром сопряженного оператора L^*) в $\mathscr{F} = \mathscr{L}_2(T)$ — понятно, что это как раз случай, когда выполняется условне (2.16) и уравнение (2.1) имеет решение $u \in W(S)$ для любой правой части $f = (\varphi, f)$, непрерывной по $\varphi \in C_0^\infty(S)$ относительно нормы $\| \varphi \|_{\mathscr{F}} = \| \varphi \|_{\mathscr{L}_2}$.

Напомиим, что мы рассматриваем уравнения (2.1) для обобщенных функций со значениями в произвольном гильбертовом пространстве (в частности, для обобщенных случайных функций со значениями в гильбертовом $H=\mathcal{L}_2(\Omega)$ на вероятностном Ω). Покажем, что состношение эквивалентности (2.16) в $\mathcal{F}=\mathcal{L}_2$ равносильно тому, что уравнение (2.1) разрешимо для любой скылярной функции $f\in\mathcal{L}_2(S)$. Действительно, наличие равенства f=Lu дает непрерывность линейной формы $(\mathfrak{q},f)=$ $=(L^*\mathfrak{q},u)$ по $\mathfrak{q}\in C_0^\infty(S)$ относительно $\|L^*\mathfrak{q}\|_{\mathcal{X}}$ и ее ограниченность на множестве $\mathfrak{q}\in C_0^\infty(S)$ с $\|L^*\mathfrak{q}\|_{\mathcal{X}}\leqslant 1$ при каждом $f\in\mathcal{L}_2(S)$, что указывает на ограниченность этого множества в гильбертовом $\mathcal{L}_2(S)$ и на справедли-

вость неравенства

$$\|\varphi\|_{\mathscr{L}_{\gamma}} \leqslant C \|L^*\varphi\|_X$$

при всех $\varphi \in C_0^{\infty}(S)$, где $||L^*\varphi||_X \leqslant ||\varphi||_{\mathscr{L}_{\gamma}}$.

Понятно, что при соотношении эквивалентности (2.16) уравнение (2.1) разрешимо в классе $u \in W(S)$ при любой правой части $f = (\varphi, f)$, непрерывной по $\varphi \in C_0^\infty(S)$ относительно $\|\varphi\|_{\mathcal{F}}$. \square

Для иллюстрации всего сказапного можно обратиться к простейшему уравпению

$$\frac{d}{dt}u = f$$

на интервале $S=(t_0,\ t_1)$ в схеме с пространством $\mathcal{F}=\mathcal{L}_2(T)$ на консчиом интервале $T=(a,\ b)\supset [S]$. Пространством обобщенных пробных функций для $u\in \mathbf{W}(S)$ здесь будет соболевское $X(S)=W_2^{-1}(S)$, и соответственно мы имеем $\mathbf{W}(S)=\mathbf{W}_2^{-1}(S)$. Ядро $\mathcal{F}\ominus\mathcal{F}$ сопряженного к L=d/dt оператора $L^*=-d/dt$ состоит из постоянных в T функций $g\equiv c$, и в случае $[S]\subset T$ очевидно, что подпространство $\mathcal{F}(S)=\mathcal{L}_2(S)$ имеет с ним отличный от 0 угол, что даст нам случай общего положения, когда решение $u\in \mathbf{W}(S)$ существует для любой $f=(\varphi,f)$, непрерывной по $\varphi\in C_0^\infty(S)$ относительно $\|\varphi\|_{\mathcal{F}}=\|\varphi\|_{\mathcal{L}_2}$. Граничное пространство $X(\Gamma)$ порождается обобщенными пробными $x=L^*g$, отвечающими постоянным на интервалах $(a,\ t_0),\ (t_0,\ t_1),\ (t_1,\ b)$ функциям $g\in \mathcal{L}_2(T)$, и эти $x\in X(\Gamma)$ в нутри $T=(a,\ b)$ проявляют себя как линейные комбинации

$$x = c_0 \delta(t - t_0) + c_1 \delta(t - t_1)$$

дельта-функций в граничных точках $t_0,\ t_1\in T$ нитервала $S=(t_0,\ t_1)$. Подпространство $X^-(\Gamma)$ образовано граничными

$$x = c1_{(t_0,t_1)} = c [\delta(t-t_0) - \delta(t-t_1)],$$

которые дают определяемые самим уравнением граничные значения

$$(x, u) = -c(1_{(t_0, t_1)}, f) = -c \int_{t_0}^{t} f dt,$$

где для обобщенной случайной функции $f \! = \! (g,\ f)$,

 $g \in \mathcal{L}_2(S)$ (скажем, типа «белого шума») имеется в виду отвечающий ей стохастический интеграл. Граничные условия (2.10) могут быть выражены для решения $u \in \mathbf{W}(S)$ как функции $u = u(t), t_0 \leqslant t \leqslant t_1$, определенной линейной комбинацией

$$c_0u(t_0)+c_1u(t_1)=(x, u)=(x, u^+)$$

с номощью соответствующего граничного $x=c_0\delta(t-t_0)+c_1\delta(t-t_1)$, задающего $X^+(\Gamma)$. При любом таком x, $x\not\in X^-(\Gamma)$, имеется единственное решение $u\in \mathbf{W}(S)$, удовлетворяющее указанным граничным условиям. Донолнительно здесь можно отметить, что аналогичная схема с $\mathcal{F}=\mathcal{L}_2(T)$ на бесконечном интервале $T=(a,\infty)$ будет более простой и удобной благодаря невырожденности $L^*=-d/dt$, задающего унитарный оператор

$$L^*: \mathcal{F} = \mathcal{L}_2(T) \to X = L^*\mathcal{F}.$$

Скажем. в этом случае непосредственно видно, что граничное $x=L^*1_{(a,t_0)}$, проявляющее себя в качестве пробной функции в нутри T как

$$x = \delta(t - t_0)$$
,

ортогонально к

$$x = L*1_{(t_0,t_1)} \subseteq X^-(\Gamma)$$

и, более того, порождает ортогональное дополнение $X_0^+(\Gamma)$ к $X^-(\Gamma)$ в граничном пространстве $X(\Gamma)$, задавая во внешних граничных условиях (2.10) типа $X_0^+(\Gamma) = X_0^+(\Gamma)$ начальное значение $u(t_0)$ для u(t), $t \geqslant t_0$. \square

Обратимся к детерминированным функциям $u \in W(S)$. Напомним, что для них функциональный класс W(S) получается сужением в области S функций $u \in W = \mathring{W}(T)$, которые являются предельными,

$$u = \lim \sigma$$

относительно соответствующей нормы $\|\cdot\|_W$ для функций $\varphi \in C_0^\infty(T)$ в объемлющей области $T \supseteq S$, причем действие дифференциального оператора $L = \sum a_k \partial^k$, непосредственно, определенного на $q \in C_0^\infty(T)$ как

$$L\varphi=\sum_{k}a_{k}\partial^{k}\varphi,$$

может быть на $u \in W$ определено предельным переходом

$$Lu = \lim L\varphi$$
,

и сужение так определяемой обобщенной функции Lu в области $S \subseteq T$ как раз и представлено в уравнении (2.1) для искомого $u \subseteq W(S)$.

Во многих известных задачах теории дифференциальных уравнений применительно к функциональным классам типа $u \in W(S)$ граничные условия на границе $\Gamma = \partial S$ ставятся фактически с помощью того или иного граничного (линейного) оператора L_0 , определенного на W(S) таким образом, для произвольно взятого «эталона» $u^+ \in W(S)$, характеризующего нужное граничное поведение и с к о м о г о решения $u \in W(S)$,

$$L_0(u-u^+) = 0. (2.17)$$

Естественно, функции $u = \varphi \in C_0^{\infty}(S)$, равные θ в окрестности $\Gamma = \partial S$, должны удовлетворять нулевым граничным условиям

$$L_0(\varphi) = 0.$$

Оказывается, для оператора L_0 с замкнутым ядром $\{u: L_0(u) = 0\}$ в W(S) справедливо следующее предложение *).

Теорема. Граничные условия произвольного типа (2.17) равносильны граничным условиям (2.10) соответствующего типа $X^+(\Gamma)$.

Действительно, подпространство $\{u\colon L_0(u)=0\}$ в W(S) однозначно описывается соответствующим аннулятором в сопряженном пространстве X(S), который, согласно ортогональному разложению (2.4), аннулируя все функции $u=\varphi\in C_0^\infty(s)$, входит в граничное пространство $X(\Gamma)$, представляя собой граничное подпространство $X^+(\Gamma)\subseteq X(\Gamma)$. Понятно, что условие (2.17) того, что разпость $u-u^+$ входит в ядро оператора L_0 , равносильно тому, что $u-u^+$ как элемент сопряженного к X(S) пространства W(S) аннулирует подпространство $X^+(\Gamma)\subseteq X(S)$, т. е.

^{*)} Аналогичное предложение о связи сильных и слабых решений общих граничных задач для функций в гильбертовом пространстве $H=\mathscr{L}_2(\Omega)$ было предложено в работе Булычев В. А., Фролов Ф. Ф. Граничные задачи для обобщенных дифференциальных уравнений // Мат. сб.— 1988.— Т. 136 (177), N23.— С. 275—296.

равносильно тому, что

$$(x, u - u^{+}) = 0,$$

 $(x, u) = (x, u^{+}), x \in X^{+}(\Gamma). \square$

Укажем на возможность использования в нашей общей схеме (в частности, для обобщенных случайных функций) тех или пных результатов теорип дифференциальных уравнений, связаппых с детерминированиы м и граничными задачами.

Обратимся, например, к одпородным граничным условиям (2.17) с эталонной функцией $u^+=0$, которые могут быть дополнены условиями согласованности (2.13) вида

$$(g, f) = 0$$
 (2.17)

для правой части уравнения (2.1) на $g \in \mathcal{L}_2(S)$, $L^*g = 0$ в области S. что выражает граничные условия $(x, u) = (x, u^+)$ при $u^+ = 0$ на граничных пробных $x = L^*g \in X^-(\Gamma)$ и в совокупности с (2.17) дает $X^+(\Gamma)$ с $u^+ = 0$). Допустим, что при этих однородных граничных условиях уравнение (2.1) с произвольной правой частью $f \in \mathcal{L}_2$, удовлетворяющей условиям (2.17)', имеет единственное решение $u \in W(S)$. Тогда в отношении общей граничной задачи (2.1), (2.10) данного типа (для случайных функций, в частности) справедливо следующее предложение.

Теорема. Граничные условия

$$(x, u) = (x, u^+), \quad x \in X^+(\Gamma),$$

являются полными, а их согласованность с уравнением (2.1) при произвольных $u^+ \in \mathbf{W}(S)$ выражается соответствующими условиями (2.13). При любой правой части $f = (\varphi, \ f)$, непрерывной по $\varphi \in C_0^\infty(S)$ относительно $\|\varphi\|_{\mathscr{L}_2}$, и любых граничных условиях (с произвольным $u^+ \in \mathbf{W}(S)$) в случае указанной согласованности уравнение (2.1) имеет единственное решение $u \in \mathbf{W}(S)$.

В самом деле, существование и единственность решения детерминированной граничной задачи с однородными граничными условиями рассматриваемого типа $X^+(\Gamma)$, где $X^+(\Gamma)$ взято, скажем, в форме граничного подпространства, при произвольной правой части $f \in \mathcal{L}_2$, удовлетворяющей (2.17), означает существование и един-

ственность линейного непрерывного функционала $u=(x,u), x\in X(S)$, равного 0 на $x=x^+\in X^+(\Gamma)$ и произвольно заданного как $(x,u)=(\varphi,f)$ на $x=L^*\varphi$ при всех $\varphi\in \mathcal{L}_2(S)$, ортогональных функциям $g\in \mathcal{L}_2(S)$ из (2.17)', что имеет место лишь тогда, когда элементы $x\in X(S)$ разлагаются в прямую сумму $x=L^*\varphi+x^+$ соответствующих $L^*\varphi$ и x^+ , а в этом случае существует и единственно решение общей граничной задачи типа $X^+(\Gamma)$ — см. (2.15).

Остается добавить, фактически повторив сказанное по новоду (2.16), что разрешимость уравнения (2.1) при любой правой части $f \in \mathcal{L}_2$, удовлетворяющей (2.17)', дает соотношение эквивалентности (2.16) для $\phi \in \mathcal{L}_2(S)$, ортогональных функциям $g \in \mathcal{L}_2(S)$ из (2.17)', а это вместе с условиями согласованности $(g, f) = (L^*g, u)$ дает разрешимость уравнения (2.1) для произвольной функции $f = (\phi, f)$, непрерывной по $\phi \in C_0^\infty(S)$ относительно $\|\phi\|_{\mathcal{L}_2}$.

2° Стохастическое волновое уравнение. Обратимся к гиперболическому уравнению вида

$$\frac{\partial^2 u}{\partial t_1^2} - \frac{\partial^2 u}{\partial t_2^2} = f, \tag{2.18}$$

рассматривая его в нашей общей схеме (2.1), (2.1') с волновым оператором $L=\partial^2/\partial t_1^2-\partial^2/\partial t_2^2$ в пространстве $\mathcal{F}=\mathcal{L}_2(T)$, которая в случае гауссовского белого шума $f=\eta$ в области $T\subseteq R^2$ задает случайное поле $u=\xi$ типа «броуновского листа» (см. (1.12), (1.12)').

При описании всех возможных граничных условий *) для этого уравнения в области $S \subseteq T$ в классе решений $u \in W(S)$ пам удобнее обратиться к нему в форме (1.12), получающейся из (2.18) поворотом координатных осей на 45°. Для получающегося таким образом дифференциального оператора

$$L=\partial^2/\partial t_1\,\partial t_2$$
 в пространстве ${\mathscr F}={\mathscr L}_2(T)$ мы в целях упрощения обо-

^{*)} Интерес к граничным условиям для уравнения (2.18) может возникнуть, скажем, при рассмотрении известной нам задачи прогнозирования, которая в случае «броуновского листа» привлекала внимание многих исследователей — см., например, Dalang R. C., Russo F. Prediction Problem for the Brownian Sheet (preprint).

значений возьмем

$$T = (0, \infty) \times (0, \infty).$$

Как мы знаем, общие граничные условия типа (2.10) определяются выбором соответствующего $X^+(\Gamma) \subseteq X(\Gamma)$ в граничном пространстве $X(\Gamma)$ всех обобщенных пробных $x \in X$ с носителями supp $x \subseteq \Gamma$ на границе $\Gamma = \partial S$, представимых как $x = L^*g$ с помощью $g \in \mathcal{L}_2(T)$, удовлетворяющих дифференциальному уравнению (2.9) с оператором $L^* = \partial^2/\partial t_1 \partial t_2$,

$$\frac{\partial^2}{\partial t_1 \, \partial t_2} g = 0$$

в области $T \setminus \Gamma = S \cup S^+$.

Всякое обобщенное решение $g \in \mathcal{L}_2(T)$ этого уравнения как функция g = g(t) переменного $t = (t_1, t_2)$ в T докально описывается формулой

$$g(t) = g_1(t_1) + g_2(t_2),$$
 (2.19)

точнее, такой вид имеет общее решение в каждом прямоугольнике $a_1 < t_1 < b_1$, $a_2 < t_2 < b_2$. В самом деле, при всех $\varphi \in C_0^\infty(a_2, b_2)$ обобщенная производная функнии

$$\int \phi'\left(t_{2}\right)g\left(t_{1},\,t_{2}\right)dt_{2} \Longleftrightarrow \mathcal{L}_{2}\left(a_{1},\,b_{1}\right)$$

на интервале $a_1 < t_1 < b_1$ равна 0 и

$$\int \varphi'(t_2) g(t_1, t_2) dt_2 = c$$

есть постоянная $c = c(\phi')$; при почти каждом t_1 из ортогонального разложения

$$g(t_1, t_2) = g_1(t_1) + g_2(t_1, t_2)$$

функции $g(t_1, t_2)$ $\in \mathcal{L}_2(a_2, b_2)$ с постоянной $g_1(t_1)$ и проекцией $g_2(t_1, t_2)$ на замыкание в $\mathcal{L}_2(a_2, b_2)$ всех производных $\phi'(t_2)$ получим

$$\int \phi'\left(t_{2}\right)g_{2}\left(t_{1},\,t_{2}\right)dt_{2}=c\left(\phi'\right), \quad \phi \Subset C_{0}^{\infty}\left(a_{2},\,h_{2}\right),$$

что однозначно определяет одну и ту же функцию $g_2(t_1, t_2) = g_2(t_2)$, и в итоге мы получаем формулу (2.19).

Примером здесь могут служить индикаторные функции $g=1_{(0,s_1)\times(0,s_2)}$, представимые как $g=1_{(0,s_1)}(t_1)$ в полосе $(0,\infty)\times(0,s_2)$ и $g=1_{(0,s_2)}(t_2)$ в полосе $(0,s_1)\times(0,\infty)$; они дают пробные дельта-функции

$$x = L * g = \delta(t - s) \tag{2.20}$$

в области T,

$$(\varphi, x) = (L * \varphi, g) = \int_{0}^{s_1} \int_{0}^{s_2} \frac{\partial^2}{\partial t_1 \partial t_2} \varphi dt = \varphi(s), \quad \varphi \in C_0^{\infty}(T),$$

— в частности, они дают граничные $x \in X(\Gamma)$ в точках $s \in \Gamma$ границы $\Gamma = \partial S$.

Допустим, часть границы представляет гладкую кривую $\gamma \subseteq \Gamma$, переменное $s = (t_1, t_2) \subseteq \gamma$ на которой может быть описано, скажем, уравнением

$$t_2 = \gamma(t_1), \quad a_1 < t_1 < b_1.$$

Используя функцию $g \in \mathcal{L}_2(T)$, отличную от 0 лишь в полосе $a_1 < t_1 < b_1$ под кривой γ , где она взята как $g = g(t_1)$ в качестве граничного $x = L^*g \in X(\Gamma)$ получим $x = (q, x) = (L^*q, g) =$

$$= \int_{a_1}^{b_1} g(t_1) \left[\int_{0}^{\gamma(t_1)} \frac{\partial^2}{\partial t_1 \partial t_2} \varphi(t_1, t_2) dt_2 \right] dt_1 =$$

$$= \int_{a_1}^{b_1} g(t_1) \left[\frac{\partial}{\partial t_1} \varphi(t_1, \gamma(t_1)) \right] dt_1. \quad \varphi \in C_0^{\infty}(T).$$

Непосредственно видно, что мы имеем здесь обобщенную функцию вида

$$x = \int_{\mathcal{V}} x(s) \left[\frac{\partial}{\partial t_1} \delta(t - s) \right] ds \tag{2.20'}$$

— распределенную по $\gamma \subseteq \Gamma$ производную $\frac{\partial}{\partial t_1}\delta(t-s)$ дельта-функций в граничных точках $s \in \gamma$. Отметим, что в случае отрезка прямой $\gamma(t_1) = c$ граничные $x \in X(\Gamma)$ вида (2.20)' ничего существенного в до-

бавление к дельта-функциям (2.20) не вносят, поскольку здесь при индикаторных функциях $g(t_1) = 1_{(a_1,s_1)}$ получается, что

$$x = \int_{a_1}^{s_1} \frac{\partial}{\partial t_1} \delta(t - s) ds_1 = \delta(t - s) - \delta(t - s^0)$$

есть просто разность дельта-функций в граничных точках $s = (s_1, c), s^0 = (a_1, c)$.

Аналогично, если переменное $s=(t_1,\ t_2) \in \gamma$ допускает представление

$$t_1 = \gamma(t_2), \quad a_2 < t_2 < b_2,$$

то на части границы $\gamma \subseteq \Gamma$ мы имеем в качестве обобщенных пробных функций граничные $x \in X(\Gamma)$ вида

$$x = \int_{\gamma} x(s) \left[\frac{\partial}{\partial t_2} \delta(t - s) \right] ds. \tag{2.20}$$

Пусть кривая $\gamma \subseteq \Gamma$ не содержит прямолинейных участков вида $\gamma(t_1) = c_1$ или $\gamma(t_2) = c_2$, которые представляют характеристические направления для оператора $L = \partial^2/\partial t_1 \, \partial t_2$; скажем точнее, пусть $\gamma \subseteq \Gamma$ есть участок границы, который одновременно может быть описан как уравнением $t_2 = \gamma(t_1)$, так и уравнением $t_1 = \gamma(t_2)$, и на нем одновременно имеются распределенные производные (2.20)' и (2.20)''. Тогда на $\gamma \subseteq \Gamma$ имеются граничные пробные $x \subseteq X(\Gamma)$ общего вида

$$x = \int_{\gamma} x(s) \left[\frac{\partial}{\partial l} \delta(t - s) \right] ds,$$

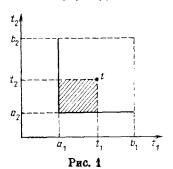
т. е. типа распределенных производных $\frac{\partial}{\partial t} \delta(t-s)$ по любому направлению l (в частности, чо нормали) в граничных точках $s \in \gamma$.

Оказывается, что для кусочно гладкой границы $\Gamma = \partial S$, представимой в виде объединения такого рода гладких кривых γ , вместе с дельта-функциями (2.20) граничные $x \in X(\Gamma)$ вида (2.20)', (2.20)" образуют полную систему в граничном пространстве $X(\Gamma)$.

Поясним это спачала на примере прямоугольной области $S=(a_1,\ b_1)\times(a_2,\ b_2)$, когда полной является система $\partial e n b \tau a$ -функций (2.20)— как уже фактически отмечалось, в этом случае граничные (2.20)' на отрезках $\gamma(t_1)=a_2,\ b_2$ и граничные (2.20)'' на отрезках $\gamma(t_2)=a_1,\ b_1$ шичего существенного не добавляют. Обратившись к детерминированным функциям $u\in W$ с их общим представлением

$$u(t) = \int_{0}^{t_1} \int_{0}^{t_2} f dt, \quad f \in \mathcal{L}_2(T), \tag{2.21}$$

рассмотрим в S граничные условия типа $X^+(\Gamma)$, взяв B качестве $x \in X^+(\Gamma)$ дельта-функции $x = \delta(t-s)$ на отрезках $\gamma(t_1) = a_2$ и $\gamma(t_2) = a_1$, задающие граничные значения $u(t_1, a_2)$, $a_1 \le t_1 \le b_1$, и $u(a_1, t_2)$, $a_2 \le t_2 \le b_2$. От-



метим здесь $X^+(\Gamma) \subseteq X_v^-(\Gamma)$, поскольку взятые нами дельтафункции $x = \delta(t-s)$ получаются как

$$\begin{aligned} x &= L^*g, \\ g &= \mathbf{1}_{(0,s_1)\times(0,s_2)} &\in \mathcal{L}_2\big(S^\perp\big) \end{aligned}$$

с индикаторами прямоугольников $(0, s_1) \times (0, s_2)$ из дополнительной к S области $S^+ = T \setminus [S]$ (см. по этому поводу замечание к (2.9)). При произвольно

заданных граничных условиях (2.10) выбранного нами типа $X^+(\Gamma) \subseteq X_0^+(\Gamma)$ наше уравнение с произвольным $f \in \mathcal{L}_2(S)$ имеет единственное решение $u \in W(S)$, определяемое, как видно из рис. 1, выражением

$$u(t) = u(a_1, t_2) + u(t_1, a_2) - u(a_1, a_2) + \int_{a_1}^{t_1} \int_{a_2}^{t_2} f dt, \quad t \in S.$$

Это означает, что $X^+(\Gamma)$ составляет полную систему в ортогональном дополнении $X_0^+(\Gamma)$ к соответствующему $X^-(\Gamma)$ в граничном пространстве $X(\Gamma)$. Воспользуемся теперь тем обстоятельством, что $X^-(\Gamma)$ играет роль граничного подпространства типа $X_0^+(\Gamma^+)$ по отношению к дополнительной области S^+ с границей Γ^+ . где лишь на части $\Gamma \subseteq \Gamma^+$ имеются отличные от 0 граничные $x \subseteq X(\Gamma^+)$.

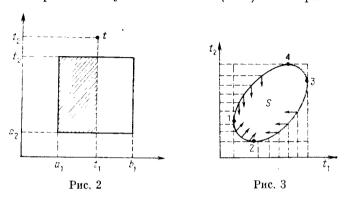
Возьмем граничные $x \in X^-(\Gamma)$, получающиеся как $x = L^*1_{(a_1,s_1) \times (a_2,s_2)}$

с номощью индикаторов прямоугольников $(a_1, s_1) \times (a_2, s_2)$ с $a_1 \leqslant s_1 \leqslant b_1$, $s_2 = b_2$ и $s_1 = b_1$, $a_2 \leqslant s_2 \leqslant b_2$ — они представляют собой «вторые разности» дельта-функций в вершинах соответствующего прямоугольника, задавая граничные значения вида

$$u(s_1, b_2) - u(a_1, b_2) - u(s_1, a_2) + u(a_1, a_2),$$

 $u(b_1, s_2) - u(b_1, a_2) - u(a_1, s_2) + u(a_1, a_2).$

Рассмотрим в дополнительной области S^+ граничные условия, задающие с помощью взятых $x \in X^-(\Gamma)$ указанные выше граничные значения. Легко видеть, что наше уравнение с произвольным $f \in \mathcal{L}_2(S)$ в области S^+ при произвольно заданных на границе $\Gamma^+ \supseteq \Gamma$ граничных условиях типа (2.10) с выбранными



нами граничимми $x \in X^-(\Gamma)$ имеет единственное решение $u \in W(S^+)$ — скажем, в указанном на рис. 2 случае с $s_1 = t_1$ оно определяется как

$$u(t) = \int \int f dt + [u(s_1, b_2) - u(a_1, b_2) - u(s_1, a_2) + u(a_1, a_2)],$$

где питеграл от данной в уравнении функции $f \in \mathcal{L}_2(S^+)$ берется по области в S^+ , получающейся из прямоугольника $(0, t_1) \times (0, t_2)$ выбрасыванием прямоугольника $[a_1, t_1] \times [a_2, b_2]$. Это означает, что выбранные нами граничные $x \in X^-(\Gamma)$ составляют полную систему в граничном подпространстве $X^-(\Gamma)$, и в итоге мы видим, что дельта-функции $x = \delta(t-s)$, $s \in \Gamma$, образуют полную систему в граничном пространстве

$$X(\Gamma) = X^{-}(\Gamma) \oplus X_{0}^{+}(\Gamma).$$

Совершенно аналогичные соображения с использованием элементарных приемов интегрирования по частям позволяют описать граничные подпространства $X^-(\Gamma)$, $X_0^+(\Gamma)$ и в случае общего вида области S с кусочно гладкой границей Γ . Скажем, взяв выпуклую область (на рис. 3 она взята ограниченной), будем иметь граничные пробные $x \in X_0^+(\Gamma)$ вида (2.20) на участке $\gamma = (1) - (2) - (3)$ и вида (2.20) на участке $\gamma = (2, 2, 2, 3)$

=(2)-(4)-(4), представляющие собой распределенные производные $\frac{\partial}{\partial t_1}(\delta(t-s))$ и $\frac{\partial}{\partial t_2}(\delta(t-s))$ дельтафункций; понятно, что на общем участке $\gamma=(1)-(2)$ мы имеем распределенные производные $\frac{\partial}{\partial t}(\delta(t-s))$ по любому направлению—в частности, по нормали (на рис. 3 направления производных схематично указаны стрелками). Кроме того, на участке $\gamma=(1)-(2)$ мы имеем граничные пробные $x\subseteq X_0^+(\Gamma)$ вида дельта-функций $\delta(t-s)$ в отдельных точках $s\subseteq\gamma$, которые получаются как $x=L^*g$ с помощью индикаторных функций

$$g=\mathbf{1}_{(0,s_1)\times (1,s_2)}\!\in\!\mathcal{L}_2(S^+).$$

Взяв в качестве $X^+(\Gamma) \subseteq X_0^+(\Gamma)$ все эти граничные x, легко убедиться, что при произвольно заданных граничных условиях (2.10) с так выбранным типом $X^+(\Gamma)$ наше уравнение с произвольной правой частью $f \in \mathcal{L}_2(S)$ имеет единственное решение $u \in W(S)$, и это означает, что указанная совокупность $X^+(\Gamma) \subseteq X_0^+(\Gamma)$ граничных пробных функций составляет полную систему в граничном подпространстве $X_0^+(\Gamma)$.

Остановимся подробнее на том, как уравнение с данной в области S функцией $f \in \mathcal{L}_2$ вместе с граничными условиями (2.10) выбранного нами типа $X^+(\Gamma)$ определяют решение $u \in W(S)$. Из общего интегрального представления (2.21) для детерминированных функций $u \in W$ видно, что при почти каждом в отдельности t_1, t_2 имеются производные

$$\frac{\partial}{\partial t_1} u(t) = \int_0^{t_2} f dt_2, \quad \frac{\partial}{\partial t_2} u(t) = \int_0^{t_1} f dt_1,$$

которые фактически и задаются в наших граничных условиях— скажем, с помощью граничных пробных $x \in X^+(\Gamma)$ в схеме на рис. 3 непосредственно задается

$$\int_{a_{1}}^{t_{1}} \frac{\partial}{\partial t_{1}} u\left(t_{1}, \gamma\left(t_{1}\right)\right) dt_{1}, \quad a_{1} \leqslant t_{1} \leqslant b_{1}.$$

на участке $\gamma = (1) - (2) - (3)$ п

$$\int_{a}^{t_{2}} \frac{\partial}{\partial t_{2}} u(\gamma(t_{2}), t_{2}) dt_{2}, \quad a_{2} \leq t_{2} \leq b_{2},$$

на участке $\gamma = (2) - (1) - (4)$. Помимо этого на участке $\gamma = (1) - (2)$ задаются еще сами значения u(s), $s \in \gamma$.

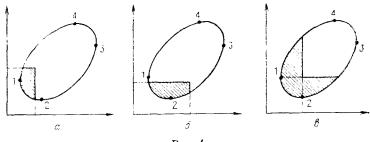


Рис. 4

Используя интегральное представление (2.21) с данной нам в области S функцией f \in $\mathscr{L}_2(T)$, получаем

$$\int\limits_{a_{1}}^{t_{1}}\frac{\partial}{\partial t_{1}}u\left(t_{1},\,\gamma\left(t_{1}\right)\right)dt_{1}=\int\limits_{a_{1}}^{t_{1}}\int\limits_{0}^{\gamma\left(t_{1}\right)}f\,dt_{2}\,dt_{1}$$

14

$$\int_{a_{2}}^{t_{2}} \frac{\theta}{\theta t_{1}} u\left(\gamma\left(t_{2}\right), t_{2}\right) dt_{2} = \int_{a_{2}}^{t_{2}} \int_{0}^{\gamma\left(t_{2}\right)} j dt_{1} dt_{2},$$

атикарадно таксовеоп отр

$$u(t) = \int \int f dt + \int_{s_{*}}^{t_{1}} \frac{\partial}{\partial t_{1}} u(t_{1}, \gamma(t_{1})) dt_{1} + u(s)$$

согласно рис. 4, а и

$$u(t) = \int \int f dt + \int_{s_2}^{t_2} \frac{\partial}{\partial t_2} u(\gamma(t_2), t_2) dt_2 + u(s)$$

согласно рис. 4, 6, где в обоих случаях двойной интеграл берется по заштрихованной области. Таким образом 140 гл. н. дифференциальные уравнения

рпс. 4, в области, и для оставшихся $t \in S$ можно определить u(t) аналогичным, столь же элементарным приемом, что мы и предоставляем сделать читателю.

Обратимся к граничному подпространству $X^-(\Gamma)$.

определяется u(t) при всех t в заштрихованной на

Возьмем содержащиеся в нем пробные $x=L^*g$ с $g\in \mathscr{L}_2(S)$ вида $g=g(t_1)$ и $g=g(t_2)$ — они дают соответственно

$$x = \int_{\sigma_1}^{\sigma_1} g(t_1) \left[\frac{\partial}{\partial t_1} \delta(t - s^+) - \frac{\partial}{\partial t_1} \delta(t - s^-) \right] ds_1 \quad (2.22)$$
 при $s^- = (s_1, \gamma^-(s_1))$ на кривой $\gamma^- = (1) - (2) - (3)$, $s^+ = (s_1, \gamma^+(s_1))$ на кривой $\gamma^+ = (1) - (4) - (3)$ н

 $x=\int_{a_2}^2g\left(t_2\right)\left[\frac{\partial}{\partial t_2}\delta\left(t-s^+\right)-\frac{\partial}{\partial t_2}\delta\left(t-s^-\right)\right]ds_2 \quad (2.22')$ при $s^-=(\gamma^-(s_2),\ s_2)$ на кривой $\gamma^-=(2)-(1)-(4),\ s^+=-(\gamma^+(s_2),\ s_2)$ на кривой $\gamma^+=(2)-(3)-(4).$ Скажем, с помощью весовых функций $g=1_{(a_1,t_1)}$ и $g=1_{(a_2,t_2)}$ эти граничные пробные $x\in X^-(\Gamma)$ определяют соответст-

$$\begin{split} \int\limits_{a_{1}}^{t_{1}} \left[\frac{\partial}{\partial t_{1}} u\left(s_{1}, \, \gamma^{+}\left(s_{1}\right)\right) - \frac{\partial}{\partial t_{1}} u\left(s_{1}, \, \gamma^{-}\left(s_{1}\right)\right) \right] ds_{1} = \\ &= \int\limits_{a_{1}}^{t_{1}} \int\limits_{\gamma^{-}\left(s_{1}\right)}^{\gamma^{+}\left(s_{1}\right)} f \, dt_{2} \, ds_{1}, \quad a_{1} \leqslant t_{1} \leqslant b_{1}, \end{split}$$

$$\int\limits_{0}^{t_{2}}\left[\frac{\partial}{\partial t_{2}}u\left(\gamma^{+}\left(s_{2}\right),\,s_{2}\right)-\frac{\partial}{\partial t_{2}}u\left(\gamma^{-}\left(s_{2}\right),\,s_{2}\right)\right]ds_{2}=$$

венно

 $\int_{a_2} \left[\frac{\partial}{\partial t_2} u \left(\gamma^+(s_2), s_2 \right) - \frac{\partial}{\partial t_2} u \left(\gamma^-(s_2), s_2 \right) \right] ds_2 =$ $= \int_{a_2}^{t_2} \int_{\gamma^-(s_2)}^{\gamma^+(s_2)} f dt_1 ds_2, \quad a_2 \leqslant t_2 \leqslant b_2,$

где двойные интегралы берутся по областям, заштрихо-

ванным на схематичных рис. 5, a и 6 и определяются правой частью f нашего уравнения в области S. Задав с помощью взятых $x \in X^-(\Gamma)$ граничные условия для рассматриваемого уравнения в дополнительной области $S^+ = T \setminus [S]$, легко убедиться, что всегда имеется единственное решение $u \in W(S^+)$, и это означает,

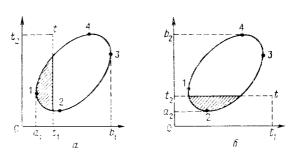


Рис. 5

что взятые нами граничные $x \in X^-(\Gamma)$ вида (2.22), (2.22)' образуют полную систему в граничном подпространстве $X^-(\Gamma)$. Для ясности укажем, например, что, согласно рис. 5, а

$$u\left(t\right) = \int \int f \, dt + \int_{a_{1}}^{t_{1}} \left[\frac{\partial}{\partial t_{1}} u\left(s_{1},\,\gamma^{+}\left(s_{1}\right)\right) - \frac{\partial}{\partial t_{1}} u\left(s_{1},\,\gamma^{-}\left(s_{1}\right)\right) \right] \, ds_{1},$$

где двойной интеграл берется по входящему в S^+ дополнению к заштрихованной области в прямоугольнике $(0, t_1) \times (0, t_2)$.

Еще раз отметим, что если для детерминирова ины х функций $u \in W$ обращение к обобщенным пробным $x \in X(\Gamma)$ на границе $\Gamma = \partial S$ дает липь удобный способ описания соответствующих граничных условий, то для общих $u \in W$ это едва ли не единственный способ самого определения граничных значений (x, u) обобщенных случайных $u = (\varphi, u), \ \varphi \in C_0^\infty(T)$. Случайные $u \in W$ типа винеровского случайного поля (броуновского листа), хотя и могут быть представлены как функции u = u(t) переменного $t \in T$, являются нигде

не дифференцируемыми, и их граничные значения вида*)

$$(x, u) = \int_{\gamma} x(s) \frac{\partial}{\partial l} u(s) ds$$

с соответствующими производными на $\gamma \subseteq \Gamma$ можно лишь интерпретировать как значения определенной на Γ с помощью «пробных» x(s), $s \in \Gamma$, обобщенной производной θ

 $\frac{\partial}{\partial l} u(s), \ s \in \Gamma;$ например, винеровское поле $u = \xi$ как функция $\xi = \xi(t)$ в гильбертовом пространстве случайных величин $H = \mathscr{L}_2(\Omega)$ удовлетворяет условию Липпица лишь с показателем

S

1/2, точнее,
$$\|\xi(t) - \xi(s)\|_{H} = (E|\xi(t) - \xi(s)|^{2})^{1/2} = (c_{1}|t_{1} - s_{1}| + c_{2}|t_{2} - s_{2}| - |t_{1} - s_{1}||t_{2} - s_{2}|)^{1/2},$$

где $c_1 = \max(s_2, t_2), c_2 = \max(s_1, t_1).$ Вернувшись к волновому уравнению (2.18), можно было бы рассмотреть для случайных полей

Рис. 6 u = W, скажем, хорошо известные в теории дифференциальных уравнений граничные задачи; например, задачу Гурса для области $S \subseteq T$, образованной характеристиками l^- , l^+ (как схематично указано на рис. 6), когда задаются граничные условия типа

$$u(s) = u^+(s), \quad s \in \Gamma,$$

или nервую краевую за ∂a чу для цилиндрической области с начальными при $t_1=t_1^0$ значениями

$$u(s) = u^+(s), \quad \frac{\partial}{\partial n} u(s) = \frac{\partial}{\partial n} u^+(s), \quad s \in \gamma = (1) - (2).$$

включающими обобщенные нормальные производные, и граничными условиями

$$u(s) = u^{+}(s), \quad s \in \gamma = (1) - (4), (2) - (3)$$

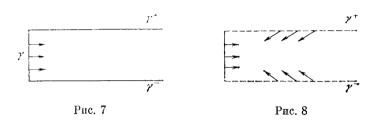
^{*)} То, что граничные значения броуновского листа на границе Γ не исчерпываются значениями $\xi(t)$, $t \in \Gamma$, было обнаружено при исследовании марковского свойства случайного поля ξ — см. Розанов Ю. А. Марковские случайные поля.— М.: Наука, 1981. Укажем здесь на возможность определения обобщенных нормальных производных непосредственно с помощью предельного перехода — см., например, Russo.

(рис. 7), или аналогичную вторую краевую задачу с теми же начальными данными на участке границы $\gamma = (1) - (2)$ и граничными условиями

$$\frac{\partial}{\partial n}u(s) = \frac{\partial}{\partial n}u^+(s), \quad s \in \gamma = (1) - (4), \quad (2) - (3)$$

(рис. 8).

Напомним, что существование и единственность решения тех или иных граничных задач в классе детермини рованных функций $u \in W(S)$ для соответствующих



траничных условий, выраженных в форме (2.10) с по-

мощью граничных пробных $x \in X^+(\Gamma)$, означает их полноту и согласованность с уравнением, что дает существование единственного решения $u \in W(S)$ стохастического уравнения (в рассматриваемом случае — уравнения (2.18)) с произвольной обобщенной случайной функцией $f = (\varphi, f)$, непрерывной по $\varphi \in C_0^\infty(S)$ относительно нормы $\|\varphi\|_{\mathscr{F}} = \|\varphi\|_{\mathscr{L}_2}$, и произвольно заданных обобщенных граничных условиях типа $X^+(\Gamma)$ — скажем, с произвольной обобщенной случайной функцией $u^+ \in W(S)$.

Обратившись к рассматриваемому уравнению в форме (2.19), остановимся на детерминированном случае смешанной краевой задачи в области S = T общего вида, схематично изображенной на рис. 8 (к этому виду относится и цилиндрическая область S, рассматриваемая в классических задачах математической физики). Отметим, что на рис. 8 графически представлена вторая смешанная задача с «косыми» производными (соответственно $\frac{\partial u}{\partial t_1}$, $\frac{\partial u}{\partial t_2}$), в которой мы имеем дело с в не ш н и м и граничными условиями типа X_0^+ (Γ) на границе $\Gamma = \partial S$.

Рассмотрим общую смешанную задачу, в которой граничные условия задают на участке границы $\gamma = (1) - (2)$

$$u = u^{+}, \quad \frac{\partial u}{\partial n} = \frac{\partial u^{+}}{\partial n}$$
 (2.23)

— саму функцию $u \in W$ и ее производную $\frac{\partial u}{\partial t}$ по некасательному направлению, а на участках границы $\gamma = (1) - (4), \ \gamma = (2) - (3)$ задают

$$c_1 u + c_2 \frac{\partial u}{\partial n} = c_1 u^+ + c_2 \frac{\partial u^+}{\partial n}. \tag{2.23}$$

Используем для $u \in W$ представление (2.21). Попятно, что по самой функции вдоль кривой $\gamma = (1) - (2)$ определяется ее производная в касательном направлении $l = \alpha_1 t_1 + \alpha_2 t_2$,

$$\frac{\partial u}{\partial l} = \alpha_1 \frac{\partial u}{\partial t_1} + \alpha_2 \frac{\partial u}{\partial t_2}.$$

что вместе с некасательной производной

$$\frac{\partial u}{\partial n} = \beta_1 \frac{\partial u}{\partial t_1} + \beta_2 \frac{\partial u}{\partial t_2}$$

определяет на у производные

$$\frac{\partial u}{\partial t_1}(s) = \int_{2}^{s_2} f(s_1, t_2) dt_2. \quad \frac{\partial u}{\partial t_2}(s) = \int_{s_2}^{s_1} f(t_1, s_2) dt_1.$$

$$s = (s_1, s_2) \in \gamma.$$

На участке границы $\gamma = (1) - (4)$ с точками $s^+ = (s_1, s_2^+)$, лежащими непосредственно над кривой $\gamma = (1) - (2)$, по данной в области S правой части уравнения определяется интеграл

$$\int_{s_2}^{s_2^+} f(s_1, t_2) dt_2,$$

а вместе с ним и производная

$$\frac{\partial u}{\partial t_1}(s^+) = \int_0^{s_2^+} f(s_1, t_2) dt_2.$$

Допустим, мы имеем дело со второй краевой задачей, когда на этом же участке границы $\gamma = (1) - (4)$ из граничных условий нам известна производная

$$\frac{\partial u}{\partial n}(s^+) = \beta_1 \frac{\partial u}{\partial t_1} + \beta_2 \frac{\partial u}{\partial t_2};$$

тогда при

$$b_2 \neq 0$$

определяется также

$$\frac{\partial u}{\partial t_2}(s^+) = \frac{1}{\beta_2} \left[\frac{\partial u}{\partial n} (s^+) - \beta_1 \frac{\partial u}{\partial t_1} (s^+) \right].$$

Аналогичным образом на участке границы $\gamma = (2) - (3)$ с точками $s^+ = (s_1^+, s_2^-)$, лежащими непосредственно правее кривой $\gamma = (1) - (2)$, по заданной в граничных условиях

$$\frac{\partial u}{\partial n} = \beta_1 \frac{\partial u}{\partial t_1} + \beta_2 \frac{\partial u}{\partial t_2}$$

при $\beta_1 \neq 0$ определяется производная

$$\frac{\partial u}{\partial t_1}(s^+) = \frac{1}{\beta_1} \left[\frac{\partial u}{\partial n}(s^+) - \beta_2 \frac{\partial u}{\partial t_2}(s^+) \right].$$

Легко видеть, что, продолжая идти по этому пути, мы можем по данной на участках $\gamma = (1) - (4)$, $\gamma = (2) - (3)$ производной $\frac{\partial u}{\partial n}$ определить

$$\frac{\partial u}{\partial t_1}(s), \quad s \in \gamma = (2) - (3),$$

$$\frac{\partial u}{\partial t_2}(s), \quad s \in \gamma = (1) - (4).$$
(2.23)

Эти данные $\frac{\partial u}{\partial t_1}$, $\frac{\partial u}{\partial t_2}$ вместе с u, $\frac{\partial u}{\partial n}$ на участке $\gamma=$ = (1)-(2) определяют внешние граничные условия (см. рис. 4), при произвольном задании которых, как мы знаем, в области $S \subseteq T$ имеется едипственное решение $u \in V$. Очевидно, оно будет также единственным решением первоначальной задачи с данной на $\gamma=(1)-(4)$, $\gamma=(2)-(3)$ производной $\frac{\partial u}{\partial n}$ —поясним, на том пути, который мы ранее проделали от $\frac{\partial u}{\partial n}$ до полученных $\frac{\partial u}{\partial t}$,

 $\frac{\partial u}{\partial t_a}$, мы от них придем к первоначальной

$$\frac{\partial u}{\partial n} = \frac{\partial u^+}{\partial n}.$$

Аналогичным образом можно рассмотреть первую краевую задачу с данной на участках $\gamma = (1) - (4)$. $\gamma = (2) - (3)$ функцией

 $u = u^+$

Чтобы использовать указанный нами путь, здесь нужно лишь обратиться к производной по касательнему направлению $l=\alpha_1t_1+\alpha_2t_2$

$$\frac{\partial u}{\partial l} = \alpha_1 \frac{\partial u}{\partial t_1} + \alpha_2 \frac{\partial u}{\partial t_2},$$

по которой при известных начальных значениях в точках (1), (2) определяется сама функция $u=u^+$; чтобы прийти к внешним граничным условиям (2.23)", мы должны иметь

$$\alpha_1 \neq 0$$

на участке $\gamma = (1) - (4)$ и

$$\alpha_2 \neq 0$$

на участке $\gamma = (2) - (3)$. Лишь несколько сложнее указанный путь будет в случае общей граничной задачи (2.23), (2.23)'. Скажем, на участке $\gamma = (1) - (4)$, располагая производной $\frac{\partial u}{\partial t_1}$, из граничных условий (2.23)'

мы можем вдоль кривой $s = \gamma$ определить

$$c_1 \int_{(1)}^{s} \alpha_2 \frac{\partial u}{\partial t_2} ds + \alpha_2 \frac{\beta_2}{a_2} \alpha_2 \frac{\partial u}{\partial t_2} (s)$$

и, решая возпикающее здесь относительно функции

$$\int_{1}^{s} \alpha_2 \frac{\partial u}{\partial t_2} ds, \quad s \in \gamma,$$

дифференциальное уравнение, определить затем производную

$$\frac{\partial u}{\partial t_2}(s), \quad s \in \gamma = (1) - (4);$$

аналогично определяется

$$\frac{\partial u}{\partial t_1}(s)$$
, $s \in \gamma = (2) - (3)$,

и таким образом, мы от общей задачи с граничными условиями (2.23), (2.23)' приходим к равносильной задаче с внешними граничными условиями (2.23), (2.23)", для которой, как мы уже знаем, при произвольном выборе граничных данных (при произвольном $u^+ \in W$) имеется единственное в области $S \subseteq T$ решение $u \in W$.

Подведем итог сказанному, обратившись к волноновому уравнению (2.18) в области S, рассмотренного с граничными условиями (2.23), (2.23)', где в (2.23)' направление n для производной $\frac{\partial u}{\partial n}$ отлично от характеристических направлений $t_1=-t_2$ на участке границы $\gamma=(1)-(4)$ и от $t_1=t_2$ на участке границы $\gamma=(2)-(3)$. Те орем а. Общая стохастическая граничная задача со смещанными граничными условиями типа (2.23), (2.21)' при их произвольном задании (с $u^+ \in W$) имеет единственное решение $u \in W$.

Сак пример приведем стохастическую вторую сметнанную задачу, в которой граничные условел определяются с номощью винеровского поля $u^+ \in W$ (являющегося независимым от источника белого шума $f = \eta$ в области S) и на участках границы $\gamma = -(1) - (4)$. (2) - (3) задаются обобщенные производные

$$\frac{\partial u}{\partial n} = \frac{\partial u^+}{\partial n}$$

в характеристических направлениях n: $t_1 = t_2$ на $\gamma = = (1) - (4)$ и n: $t_1 = -t_2$ на $\gamma = (2) - (3)$; решение такой граничной задачи в области S дает нам броуновский лист $u \in W$ (точнее, целый броуновский лист в области $T \supseteq S$ получается склейкой решения в S с частью данного броуновского листа $u^+ \subseteq W$ вне S).

 3° Стохастические эллиптические и параболические уравнения. Для иллюстрации предложенного нами общего подхода к обобщенным граничным условиям в его связи с известными эллиптическими граничными задачами теории дифференциальных уравнений можно обрагится, например, к уравнению (2.1) с оператором Лапласа $L=\Delta$, рассматривая его в области $S \subseteq T$ с достаточно хорошей границей.

148

Заменив Δ на $\mathscr{P}=-\Delta$, обратимся спачала к нашей схеме с оператором $L=\mathscr{P}\geqslant 0$ в отвечающем ему пространстве $\mathscr{F}=W=\mathring{W}(T)$, которое получается замыканием $C_0^\infty(T)$ относительно нормы

$$\|\varphi\|_{W} = (\varphi, \mathscr{P}\varphi)^{1/2}$$

и локально совнадает с соболевским $\mathring{W}^1_2(T)$. В этой схеме для уравиения Пуассона

$$\Delta u = f \tag{2.24}$$

в ограниченной области S с замыканием $[S] \subset T$ пробными функциями будут обобщенные $x \in X(S)$ из соболевского пространства $X(S) = W_2^{-1}(S)$, которое образуется всеми x, $\sup x \subseteq [S]$, из сопряженного к $W = -\mathring{W}(T)$ пространства X.

Соответствующий класс $u \in \mathbf{W}(S) = \mathbf{W}_2^1(S)$ обобщенных функций u = (x, u) определяется условием непрерывности по $x \in C_0^\infty(S)$ относительно соболевской нормы $\|x\|_x = \|x\|_{-1}$ в X(S), что позволяет по непрерывности продолжить u = (x, u) на все обобщенные пробиме $x \in X(S) = \left[C_0^\infty(S)\right]$. Для любой обобщенной функции $f = (\phi, f)$, непрерывной по $\phi \in C_0^\infty(S)$ относительно соболевской нормы $\|\phi\|_W = \|\phi\|_1$, уравнение (2.24) является р а з р е ш и м ы м — оно имеет решение $u \in \mathbf{W}(S) = \mathbf{W}_2^1(S)$. Его граничные значения $(x, u), x \in X(\Gamma)$, на границе $\Gamma = \partial S$ являются предельными для (ϕ, u) с $\phi \in C_0^\infty(S)$, $\phi \to x$ в $X(S) = \left[C_0^\infty(S)\right]$. Обобщенные пробные $x \in X(\Gamma)$ вида

$$x = (\varphi, x) = \int \varphi(s) x(s) ds, \quad \varphi \in C_0^{\infty}(S).$$

образуют полную систему в граничном пространстве $X(\Gamma)$, задавая след обобщенных функций $u \in \mathbf{W}(S) = \mathbf{W}_2^1(S)$, который в случае детерминированных (скалярных) $u \in W(S) = W_2^1(S)$ представим соответствующими функциями u(s), $s \in \Gamma$, из $\mathscr{L}_2(S)$ с

$$\int_{\Gamma} u(s) x(s) ds = (u, x) = (x, u)$$

-- см. по этому поводу § 4 гл. I.

Взяв в качестве $X^+(\Gamma)$ полную систему пробных $x \in X(\Gamma)$ указанного выше вида, в граничных усло-

виях (2.10) типа $X^+(\Gamma)$ мы задаем не что иное, как след интересующего нас решения $u \in \mathbf{W}(S)$. Задание граничных условий (2.10) типа $X^+(\Gamma)$ с помощью надлежащего $u^+ \in \mathbf{W}(S)$ выражает требование того, чтобы граничное поведение искомого решения $u \in \mathbf{W}(S)$ было таким же, как у взятого эталона $u^+ \in \mathbf{W}(S)$ (точнее, чтобы решение имело на границе $\Gamma = \partial S$ такой же след, как и эталонная функция u^+). Граничные условия (2.10), означающие, что разность $u-u^+$ аннулирует подпространство $X(\Gamma) \subseteq X(S)$, для детерминированных функций $u, u^+ \in W(S)$ равносильны тому, что

$$u-u^+ \in \mathring{W}(S) = \mathring{W}_2^1(S) = [C_0^\infty(S)].$$

В целом можно сказать, что рассматриваемое уравнение (2.24) с граничными условиями (2.10) составляют обобщенную задачу Дирихле, которая при произвольной правой части в (2.24) и произвольно заданных полных граничных условиях (2.10) имеет единственное решение $v \in W(S) = W_2^1(S)$. \square

Напомиим здесь, что обычно задача Дирихле для эллинтического оператора $L=\mathcal{P}\geqslant 0$ порядка 2p в соболевском пространстве $W(S)=W_2^p(S)$ определяется заданием в граничных условиях полного следа искомой функции $u\in V(S)$, включающего след всех ее нормальных
производных $\partial^h u, \ k=0, \ldots, p-1$. Аналогичная обобщенная задача Дирихле запускает постановку в нашей общей
схеме и для обобщенных случайных функций $u\in$ $\mathbf{W}(S)$. Как мы знаем, задающие полный след граничные условия являются полными, и, согласио нашей
общей теореме о существовании и единствечности решения уравнения (2.1) в классе $\mathbf{W}(S)$, можно сформулировать следующее предложение.

Теорема. Обобщенная задача Дирихле для уравпения (2.1) с оператором $L=\mathcal{P}\geqslant 0$ порядка 2p имеет единственное решение $u\in W(S)=\mathbf{W}_2^p(S)$ при любой правой части $f=(\varphi,\ f),\$ пепрерывной по $\varphi\in C_0^\infty(S)$ относительно $\|\varphi\|_w=\|\varphi\|_p$ в $W(S)=W_2^p(S),\$ и любой функции $u^+\in \mathbf{W}(S),\$ задающей полный след

$$\partial^h u = \partial^h u^+, \quad k = 0, \dots, p-1,$$

на границе $\Gamma = \partial S$ области S.

Это предложение применительно к детерминированным функциям в соболевском $W^p_{\, 2}(S)$ с условием

Дирихле в форме

$$u - u^{+} \subseteq \overset{\circ}{W}_{2}^{p}(S) = \left[C_{0}^{\infty}(S)\right]$$

дает важный и хорошо известный пример теоремы дифференциальных уравнений в частных производных. □

Обратимся теперь к уравнению (2.24) в нашей схеме с оператором $L=\Delta$ в пространстве $\mathcal{F}=\mathcal{L}_2(T)$, скажем, взяв $T=R^d$. В ограниченной области S пробными для уравнения (2.24) функциями будут обобщенные $x\in X(S)$ из соболевского пространства $X(S)=W_2^{-2}(S)$, образованного всеми x, $\mathrm{supp}\,x\subseteq [S]$, из пространства X, сопраженного к соответствующему $W=W(R^d)$. Которое получается замыканием функций $q\in C_0^\infty(R^d)$ относительно пормы

$$\|\,\varphi\,\|_W = \|\,L\varphi\,\|_{\mathcal F} = \|\,\Delta\varphi\,\|_{{\mathcal Z}_2}$$

и локально представляет собой пространство тина W_2^2 . Соответствующий класс $u \in \mathbf{W}(S) = \mathbf{W}_2^2(S)$ определяется условием непрерывности обобщенных функций u = (x, u) по $x \in C_0^\infty(S)$ отпосительно соболевской пормы $\|x\|_X = \|x\|_{-2}$ в X(S), что нозволяет по непрерывности продолжить u = (x, u) на все обобщенные пробные $x \in X(S) = [C_0^\infty(S)]$.

Как и для всякого дифференциального оператора с постоянными коэффициентами, $L^* = \Delta$ является невырожденным на $\mathcal{F} = \mathcal{L}_2(R^t)$, так что уравнение (2.24) разрешимо в классе $u \in \mathbf{W}_2^2(S)$ для любой обобщенной функции $f = (\varphi, f)$, пепрерывной по $\varphi \in C_0^\infty(S)$ относительно пормы

$$\|\varphi\|_{\mathscr{F}} = \|\varphi\|_{\mathscr{Z}_{\mathfrak{d}}}.$$

Граничное пространство $X(\Gamma)$ всех обобщенных пробных x, supp $x \subseteq \Gamma$ (с носителем на границе $\Gamma = \partial S$) может быть описано с помощью составляющих в нем полную систему обобщенных функций $x = (\varphi, x)$, $\varphi \in C_0^\infty(\mathbb{R}^d)$, вида

$$x = \int_{\Gamma} x(s) \varphi ds, \quad \int_{\Gamma} x(s) \partial \varphi ds$$

(с нормальными производными ∂q); эти грапичные пробные $x \in X(\Gamma)$ определяют распределенные на границе Γ функции $u, \partial u$ как

$$(x, u) = \int_{\Gamma} x(s) u ds, \quad \int_{\Gamma} x(s) \partial u ds = (u, x)$$

с соответствующими «весовыми» (или «пробными», если хотите) функциями x(s), $s \in \Gamma$, задавая полный след u, ∂u обобщенных $u \in \mathbf{W}_2^2(S)$ на Γ (см. § 4 гл. I).

Граничное $X^-(\Gamma) \subseteq X(\Gamma)$, где значения (x, u), $x \in X^-(\Gamma)$, любого решения $u \in W_2^2(S)$ уравнения (2.24) определяются, согласно (2.11), самим уравнением, образовано всеми пробными $x = L^*g$ $(L^* = \Delta)$ с гармоническими, согласно (2.12) функциями $g \in \mathcal{L}_2(S)$ в области S, и, применяя формулу Грина, их можно описать как обобщенные функции вида

$$x = (\varphi, x) = \int_{\dot{\mathbf{r}}} (\varphi \, \partial g - g \, \partial \varphi), \quad \varphi \in C_0^{\infty}(T).$$

а точнее,

$$(\varphi, x) = (\Delta \varphi, g) = \lim_{S_{\varepsilon}} \int_{\Xi} \Delta \varphi g = \lim_{\Gamma_{\varepsilon}} \int_{\Xi} (\varphi \, \partial g - g \, \partial \varphi).$$

где указанные интегралы появляются при применении формулы Грина к надлежаще аппроксимпрующим областям $S_{\epsilon}^- \subseteq S$ с границами $\Gamma_{\epsilon}^- \to \Gamma$.

Возьмем в (2.10) граничные условия типа $X^+(\Gamma)$ с системой пробных $x \in X^+(\Gamma)$, определяющих след самих функций $u \in W_2^2(S)$. Для детерминированных функций $u \in W(S)$ из соболевского пространства $W(S) = W_2^2(S)$ уравнение (2.24) с $f \in \mathcal{L}_2(S)$ вместе с задающими след

$$u(s) = u^+(s), \quad s \in \Gamma,$$

граничными условиями (2.10) дает нам известную забачу Дирихле, относительно которой в теории дифференцированных уравнений имеется, скажем, следующий результат:

при однородных граничных условиях (с $u^+=0$) для любой правой части $f\in \mathscr{L}_2$ уравнение Пуассона (2.24)

в ограниченной области S с гладкой границей $\Gamma = \partial S$ имеет единственное решение $u \in W(S)$ в соболевском $W(S) = W_2^2(S)$ *). Как мы зпаем, это указывает на полноту и согласованность условий Дирихле, представляющих собой граничные условия типа (2.14), и, следовательно, в отношении стохастического уравнения Пуассона (2.24) получается следующее предложение.

Теорема. Для любой обобщенной случайной функции $f=(\varphi, f)$, непрерывной по $\varphi \in C_0^\infty(S)$ относительно $\|\varphi\|_{\mathscr{L}_2}$, при произвольно заданных стохастических гра-

ничных условиях Дирихле

$$u = u^+$$

на границе $\Gamma = \partial S$ с любым $u^+ \in W_2^2(S)$ уравнение (2.24) имест единственное решение $u \in W_2^2(S)$. \square

Возьмем еще в (2.10) граничные условия другого типа $X^+(\Gamma)$ с системой пробных $x \in X^+(\Gamma)$, задающих след

$$\partial u(s) = \partial u^+(s), \quad s \in \Gamma,$$

нормальных производных ∂u для функций $u \in \mathbf{W}_2^2(S)$, а также, скажем,

$$\int_{\Gamma} u = \int_{\Gamma} u^+.$$

Необходимость согласования их с уравнением (2.24) диктует здесь определенное требование на (x, u) при $x = L^*g \in X^+(\Gamma) \cap X^-(\Gamma)$ с индикатором $g = 1_s \in \mathcal{L}_2(S)$ области S.

$$x = (\varphi, x) = -\int_{\Gamma} \partial \varphi, \quad \varphi \in C_0^{\infty}(T),$$

при $\Delta u = f$ задающим граничное значеппе

$$(x, u) = (u, x) = -\int_{\Gamma} \partial u = (1_s, f);$$

^{*)} Граница $\Gamma = \partial S$ области $S \subseteq R^d$ предполагается гладкой класса C^2 , и возникающее в нашей схеме W(S) как сужение пространства $\hat{W}_2^2(R^d)$ на S совпадает с соболевским пространством $W_2^2(S)$ в его общепринятом понимании (см., например, Михайлов В. П. Дифференциальные уравнения в частных производных.— М.: Наука, 1983, с. 240, 139).

интеграл от нормальной производной ∂u здесь можно понимать буквально в случае детерминированных $u \in W_2^2(S)$ со следом $\partial u = \partial u(s)$, $s \in \Gamma$, из $\mathscr{L}_2(\Gamma)$, когда

$$-\int_{\dot{\Gamma}}\partial u=\int_{\dot{S}}f(t)\,ds$$

 $\mathbf{c} : f = \Delta u \in \mathcal{L}_2(S)$.

В детерминированном случае поставленные здесь граничные условия составляют для уравнений Пуассона хорошо известную в теории дифференциальных уравнений задачу Пеймана, относительно которой имеет место следующий результат*): при однородных граничных условиях (с $u^+=0$) для любой правой части $f \in \mathcal{L}_2$. $\int\limits_S f(t) \, dt = 0$, уравнение Пуассона (2.24) в ог-

раниченной области S с гладкой границей $\Gamma=\partial S$ имеет единственное решение $u \in W_2^2(S)$. Как следствие в отношении взятой нами обобщенной задачи Неймана для стохастического уравнения Пуассона получается следующее предложение.

Теорема. Для любой обобщенной случайной функции $f=(\varphi,\ f)$, непрерывной по $\varphi \in C_0^\infty(S)$ относительно $\|\varphi\|_{\mathscr{L}_2},$ при произвольно заданных условиях Неймана

$$\partial u = \partial u^+, \quad \int_{\dot{\Gamma}} u = \int_{\dot{\Gamma}} u^+$$

на границе $\Gamma=\partial S$ с любым $u^+\in \mathbf{W}_2^2(S),$ $\int\limits_{\dot{\Gamma}}\partial u^+=\int\limits_{S}f$ уравнение (2.24) имеет единственное решение $u\in \mathbf{W}_2^2(S).$

Нужно еще раз здесь отметить, что случайные $u \in W(G)$

 $\in \mathbf{W}(S)$ из класса

$$\mathbf{W}(S) = \mathbf{W}_{2}^{1}(S), \ \mathbf{W}_{2}^{2}(S),$$

рассматриваемые как обобщенные функции со значениями в гильбертовом пространстве $H=\mathcal{L}_2(\Omega)$ на вероятностном Ω , по своим локальным свойствам весьма отличаются от детерминированных функций, образующих

^{*)} См. примечание на с. 151.

соответствующий подкласс

$$W(S) = W_2^1(S), \quad W_2^2(S).$$

$$\|\xi(t) - \xi(s)\|_{H} = (\mathbf{E} |\xi(t) - \xi(s)|^{2})^{1/2} = \sigma |t - s|^{1/2}.$$

Несмотря на уже пе раз отмечавшееся существенное различие в свойствах с л у ч а й ны х функций $u \in \mathbf{W}(S) = \mathbf{W}_2^p(S)$ и детерминированных функций соответствующего соболевского класса $u \in W(S) = W_2^p(S)$, наконленный теорией дифференциальных уравнений обширный материал по различным граничным задачам в соболевских пространствах для эллиптических и параболических уравнений можно с успехом применить к общему стохастическому уравнению (2.1), когда в рамках нашей схемы с подходящим $T \supset [S]$ в качестве обобщенных пробных функций $x \in X(S)$ для этого уравнения в области S мы пмеем соответствующее соболевское пространство типа

$$X(S) = W_2^{-p}(S).$$

Например, это может быть соболевское $X(S)=W_2^{-p}(S)$, характеризуемое одним показателем $p\geqslant 0$, что в нашей схеме получается для уравнения (2.1) с эллиптическим оператором $L=\mathscr{P}\geqslant 0$ порядка 2p в отвечающем ему $\mathscr{F}=W$, или для общего эллиптического оператора L порядка p. в пространстве $\mathscr{F}=\mathscr{L}_2$, пли, скажем, это может быть $X(S)=W_2^{-p}(S)$ с мультиноказателем p=(l,1) для

параболического уравнения (2.1)

$$\frac{\partial u}{\partial r} + Au = f \tag{2.25}$$

в пространстве $\mathcal{F}=\mathcal{L}_2$ с производной $\partial/\partial r$ по временному и переменному $r>r_0$ и эллиптическим оператором $A\geqslant 0$ порядка l=2q, действующим по группе $s\in R^{d-1}$ пространственных переменных в t=(s,r).

Используя наше общее вспомогательное предложение, устанавливающее полноту и согласованность граничных условий на основе разрешимости соответствующей детерминированной граничной задачи, мы можем установить разрешимость аналогичной стохастичесской граничной задачи.

К такого рода граничным задачам для параболического уравнения (2.25) с $u \in W(S) = W_2^{(2q,1)}(S)$ можно отнести, например, задачу Коши в полупространстве $S = R^{d-1} \times (r_0, \infty)$ с условиями Коши, в начальный момент «времени» $r = r_0$ задающими (обобщенный) след

$$u = u^{+}$$

с помощью падлежащего эталона, в качестве которого можно взять произвольное $u^+ \in \mathbf{W}(S)$; сюда же можно отнести первую краевую задачу в цилиндрической области $S = G \times (r_0, r_1)$ с заданным следом

$$u = u^+$$

при $r=r_0$ на основании $G\subseteq R^{d-1}$ цилиндра S и (обобщенным) следом

$$\partial^k u = \partial^k u^+, \quad k = 0, \ldots, q_i - 1,$$

самой функции и ее нормальных производных на боковой поверхности этого цилиндра (напомним, что 2q=l есть порядок эллиптического оператора A в (2.25)).

Отметим, что решение $u=\xi$ задачи Коши дает решение соответствующего стохастического уравнения Ито

$$d\xi_r + A\xi_r dr = d\eta_r, \tag{2.26}$$

как об этом уже говорилось при рассмотрении (1.18), но эдесь уже при произвольных начальных условиях

$$\xi_{r_0}=\xi_{r_0}^+$$

— это решение $u=\xi$ представляется следом $\xi_r=u_r$, функции $u=\xi\in W_2^{(2q,1)}(S)$ $r\geqslant r_0$, (см. но этому поводу

(4.20) — (4.23) гл. I).

Добавим, что, рассматривая стохастическое уравнение Ито со случайным процессом ξ_r , $r > r_0$. скажем, в фазовом пространстве $\mathcal{L}_2(G)$, для линейного уравнения типа (2.26) в нашей схеме можно поставить и первую краевую задачу, обратившись к соответствующему параболическому уравнению (2.25) со случайным источником f, который получается из правой части уравнения (2.26) с $\eta_r \in \mathcal{L}_2(G)$ так же, как это было указано в примере с уравнением (1.18). Соответствующее $u \in \mathbb{W}_2^{(2q,1)}(S)$ в $S = G \times (r_0, \infty)$ имеет при фиксированном r след

$$u_r = \xi_r \in \mathbf{W}_2^q(G)$$
.

который в области G является функцией с определенным следом ее самой и ее нормальных производных

$$\partial^k u_r = \partial^k \xi_r, \quad k \leq q - 1,$$

на границе ∂G , что позволяет в форме первой краевой задачи поставить граничные условия

$$\xi_{r_0} = \xi_{r_0}^+$$

при $r=r_0$ на основании G цилиндра $S=G imes_{\bullet}(r_0,\infty)$ и $\partial^k \xi_r=\partial^k \xi_r^+, \quad k=0,\ldots,q-1,$

на его боковой поверхности *).

Покажем еще, как в нашей общей схеме можно исцользовать известные результаты по разренимости граничных задач для параболического уравнения (2.25) с оператором $A=-\Delta$,

$$\frac{\partial u}{\partial t} - \Delta u == f.$$

^{*)} Один из возможных подходов к однородным (нулевым) граничным условиям для эволюционных стохастических уравнений сводится к выбору надлежащего функционального пространства как пространства состояний описываемого уравнением случайного процесса — см., например, Гихман II. И. Граничнам задача для стохастического уравнения параболического типа // Укр. мат. журн.— 1979.— Т. 31, № 5.— С. 483—489 (обзор результатов в этом направлении можно найти в книге Розовский Б. Л. Эволюционные стохастические системы.— М.: Наука, 1983).

Рассмотрим две известные граничные задачи для этого уравнения в ограниченном цилиндре $S = G \times (r_0, r_1)$, $G \subseteq R^{d-1}$. В обеих из них при $r = r_0$ на основании цилиндра S задается

$$u_{r_0} = u_{r_0}^+$$
:

в nepsoù смешанной задаче (типа Коши — Дирихле) на боковой поверхности цилиндра S задается еще

$$u_r = u_r^+$$
,

а во *второй смешанной задаче* (тппа Коши — Неймана) — нормальная производная

$$\partial u_r = \partial u_r^+;$$

уточним, что мы имеем в виду граничные условия. заданные с помощью следа функции $u^+ \in W_2^{(2,1)}(S)$ и ее нормальной производной.

В детерминированном случае относительно этих задач известно *), что для любой правой части $f \in \mathcal{L}_2(S)$ при одпородных граничных условиях с $u^+=0$ имеется единственное решение $u \in W(S) = W_2^{(2,1)}(S)$. Это означает, что в обеих поставленных задачах граничные условия, задающие соответствующую часть полного следа функций $u \in W_2^{(2,1)}(S)$, являются в нашей схеме условиями типа (2.14), и мы приходим к следующему предложению.

Теорема. Стохастические первая и вторая смешанные задачи имеют единственное решение $u=\xi\in W_2^{(2,1)}(S)$ для любого стохастического источника $f=\eta$, непрерывного по пробным $\varphi\in C_0^{\infty}(S)$ относительно $\|\varphi\|_{\mathscr{L}_2}$ при произвольных стохастических граничных условиях с любым $u^+\in W_2^{(2,1)}(S)$.

Отметим, что обобщенное случайное поле $u=\xi$, которое возникает как единственное решение $u\in \mathbf{W}(S)$ уравнения (2.25) в цилиндре $S=G\times (r_0,\ r_1)$ с теми или иными граничными условиями, может быть продолжено при $r_1\to\infty$ на область $G\times (r_0,\ \infty)$. На каждом сечении $G\times \{r\}$ будет след $u_r=\xi_r$, который может быть описан.

^{*)} См., например, Михайлов В. П. Теория дифференциальных уравнений в частных производных— 2-е изд.— М.: Наука, 1983.

158

например, с помощью пробных функций $\varphi \in C_0^{\infty}(G)$ в области G, соответственно представляя там при каждем $r \ge r_0$ обобщенное случайное поле

$$\xi_r = (\varphi, \xi_r), \quad \varphi \in C_0^{\infty}(G);$$

как уже фактически отмечалось ранее, само поле ξ в области $G \times (r_0, \infty)$ однозначно определяется по случайному процессу ξ_r , $r \ge r_0$,— скажем, при всех проблых функциях вида $x = \varphi \otimes \alpha$ в прямом произведении $G \times (r_0, \infty)$ мы имеем

$$(\varphi \otimes \alpha, \xi) = \int \alpha(r) (\varphi, \xi_r) d\tau.$$

Предположим, что обобщенная случайная функция $j=\eta$ в правой части (2.25) есть производная случайного процесса w_r , $r \ge r_0$ с фазовым состоянием, которое может быть описано как обобщенное случайное поле

$$w_r = (\varphi, w_r), \quad \varphi \in C_0^{\infty}(G),$$

в области G, точнее,

$$(\varphi \otimes \alpha, \eta) = -\int \alpha'(r) (\varphi, w_r) dr$$

на полной системе всех пробных функций вида $\phi \otimes \alpha$ в $G \times (r_0, \infty)$. Согласно обобщенному дифференциальному уравнению (2.25), мы имеем тогда

$$-\int \alpha'(r)(\varphi,\xi_r)dr - \int \alpha(r)(A^*\varphi,\xi_r)dr =$$

$$= -\int \alpha'(r) (\varphi, w_r) dr,$$

что при $w_{r_0} = 0$ дает нам

$$(\varphi, \xi_r) - (\varphi, \xi_{r_0}) - \int_{r_0}^r (A^*\varphi, \xi_r) dr = (\varphi, w_r), \quad r \geqslant r_0.$$

а это **инт**егральное уравнение определяет указанное в. (2.26) *стохастическое уравнение Ито*

$$d\xi_r = A\xi_r dr + dw_r$$
.

Таким образом, предложенная в (2.25)—(2.26) вероятностная модель дает нам стохастическое уравнение Итос неоднородными стохастическими граничными условиями.

§ 3. Однородные уравнения

1° Общий тип разрешимых граничных задач; точные и приближенные решения. Обратимся к общему однородному уравнению (2.1) с правой частью f=0,

$$Lu = 0 (3.1)$$

в области S, при произвольно заданных граничных условиях (2.10) того или иного тица $X^{\pm}(\Gamma)$,

$$(x, u) = (x, u^+), \quad x \in X^+(\Gamma).$$
 (3.2)

С мемощью выбранной системы граничных пробных $x \in X^+(\Gamma)$ в (3.2) задаются значения линейной непрерывной но x функции $u^+ = (x, u^+)$, которая при указанных свойствах линейности и непрерывности в остальном является произвольной — скажем, можно считать, что граничные условия (3.2) предписывают для искомого решения $u \in W(S)$ такие же граничные значения (x, u), $x \in X^-(\Gamma)$. Как и у произвольно данного эталона $u^+ \in W(S)$. Понятно, что задание в (3.2) линейной непрерывной функции $(x, u) = (x, u^+)$ на той или пной системе $x \in X^+(\Gamma)$ однозначно определяет значения $(x, u) = (x, u^+)$ на всех x из замкнутой линейной оболочки исходного $X^+(\Gamma)$, так что, не ограничивая общности, можно считать $X^+(\Gamma)$ подпространством в граничеры пространстве $X(\Gamma)$ всех обобщенных пробных $x \in X(S)$ с носителями supp $x \subseteq \Gamma$ на границе $\Gamma = \partial S$ области S.

Мы уже отмечали, что в функциональном классе W(S) детерминированных функций общие граничные условия (3.2) эквивалентным образом могут быть заданы с помощью граничного оператора L_0 на W(S) в форме

$$L_0(u - u^+) = 0 (3.2)'$$

с навным эталоном $u^+ \in W(S)$ — для данных в этой форме граничных условий соответствующее $X^+(\Gamma)$ в сопряженном пространстве $X(S) = W(S)^*$ есть аннулятор якра оператора L_0 в W(S).

Допустим, что детерминированиая граничная задача (3.1), (3.2) при произвольном $u^+ \in W(S)$ имеет единственное решение $u \in W(S)$. Это сзначает, что всякий линейный непрерывный функционал u = (x, u), равный 0 на $x \in L^*C_0^\infty(S)$ и про-

извольно заданный на $x \in X^+(\Gamma)$, единственным образом продолжается на все пространство $x \in X(S)$, а это в свою очередь означает, что подпространства

$$X^{+}(S) := \left[L * C_0^{\infty}(S)\right]$$

и $X^+(\Gamma)$ образуют прямую сумму

$$X^{-}(S) + X^{+}(\Gamma) = X(S)$$
 (3.3)

с $X^{-}(S) = \left[\mathscr{P}C_{0}^{\infty}(S) \right] \oplus X^{-}(\Gamma)$, где, согласно ортогональному разложению (2.4), подпространство $\left[\mathscr{P}C_{0}^{\infty}(S) \right]$ ортогонально всему граничному $X(\Gamma)$, и, следовательно, $X^{-}(\Gamma)$ с $X^{+}(\Gamma)$ образуют прямую сумму

$$X^{-}(\Gamma) + X^{+}(\Gamma) = X(\Gamma), \tag{3.3}$$

причем угол $0 \neq 0$ между $X^-(\Gamma)$ и $X^+(\Gamma)$ равен углу между $X^-(S)$ и $X^+(\Gamma)$. При произвольных граничных условиях тина $X^+(\Gamma)$ с указанным в (3.3) свойством общее неоднородное уравнение

$$Lu = f$$

с произвольным f имеет единственное решение $u \in \mathbf{W}(S)$, определяемое формулой

$$(x, u) = (g, f) + (x^+, u^+), \quad x \in X(S).$$
 (3.4)

где $(g, f) = (x^-, u), (x^+, u^+) = (x^+, u)$ задают $u \in \mathbf{W}(S)$ на компонентах $x^- = L^*g \in X^-(S)$ с $g \in \mathcal{F}(S) = [C_0^\infty(S)]$ и $x^+ \in X^+(\Gamma)$ в разложения $x = x^- + x^+$ произвольного $x \in X(S)$; очевидно, что первое слагаемое в (3.4) представляет общее решение

$$u = (x, u) = (x^-, u) = (g, f), \quad x \in X(S),$$
 (3.5)

неоднородного уравнения с нулевыми граничными условиями типа $X^+(\Gamma)$, а второе слагаемое — общее решение

$$u = (x, u) = (x^+, u) = (x^+, u^+), \quad x \in X(S), \quad (3.6)$$

однородного уравнения с произвольными граничными условиями.

Сформулируем полученный результат.

Теорема. При условии, что однородная детерминированная задача (3.1), (3.2)' имеет единственное решение, общая стохастическая граничная задача того же типа $X^+(\Gamma)$ также имеет единственное решение $u \in W(S)$, определяемое формулой (3.4).

Отметим, что в нашей схеме для уравнения (2.1), (3.1) с оператором $L = \mathcal{P} \ge 0$ на соответствующем пространстве $\mathcal{F} = W$, когда $X^-(S) = \left[\mathcal{P}C_0^{\infty}(S)\right]$ и в прямой сумме (3.3) граничным подпространством $X^+(\Gamma) \equiv X(\Gamma)$ может быть лишь само $X(\Gamma)$ (см. (2.5), (2.6)), имеющей единственное решение однородной граничной задачей типа (3.2), (3.2)' является обобщенная задача Дирихле с

$$X^{+}(\Gamma) = X_{0}^{+}(\Gamma) = X(\Gamma);$$

в схеме же с общим дифференциальным оператором L в пространстве $\mathcal{F} = \mathcal{L}_2$ мы имеем разнообразие граничных задач типа (3.2), (3.2)', имеющих единственное решение при произвольно заданных граничных условиях.

Отметим также, что предложенная выше теорема распространяется на случай граничных задач общего типа $X^+(\Gamma)$, когда произвольность граничных условий тем не менее предполагает их согласованность с f=0- см. (2.13), (2.13)'. Примером здесь может служить задача Неймана для уравнения Лапласа с $L=\Delta$ в $\mathcal{F}=\mathcal{L}_2$, когда на границе $\Gamma=\partial S$ произвольно задается (обобщенная) нормальная производная

$$\frac{\partial u}{\partial n} := \frac{\partial u^+}{\partial n},$$

согласованность которой с f=0 означает, что

$$\int_{\Gamma} \frac{\partial u^+}{\partial n} = 0;$$

в качестве соответствующего $X^+(\Gamma)$ при представлении этих граничных условий в форме (3.2)' можно взять систему обобщенных пробных

$$x = (\varphi, x) = \int_{\Gamma} x(s) \partial \varphi ds, \quad \varphi \in C_0^{\infty}(T),$$

из соболевского $X(S)=W_2^{-2}(S)$ с системой весовых функций x(s), $s\in \Gamma$, полностью определяющих соответствующий след нормальных производных ∂u на границе $\Gamma=\partial S$ области $S\subseteq T$ для функций $u\in W(S)$ из соболевского $W(S)=X(S)^*=W_2^2(S)$. \square

Выбор граничного подпространства $X^+(\Gamma)$ определяет тип граничных условий (3.2). Поясним еще раз, что мы имеем в виду, на примере оператора Лаиласа $L=\Delta$ в пространстве $\mathcal{F}=\mathcal{L}_2$, когда $X(S)=W_2^{-2}(S), \ W(S)==W_2^2(S)$ есть соболевские пространства — здесь задачи Дирихле, Неймана или смещанная задача получаются при выборе в (3.2) соответствующего $X^+(\Gamma)$.

От одного типа граничных условий всегда можно перейти к другому. Именно, по заданным граничным условиям (3.2) типа $X^+(\Gamma) = X_1^-(\Gamma)$ можно непосредственно эпределить соответствующие условия любого другого типа $X^+(\Gamma) = X_2^+(\Gamma)$, взяв для $x \in X_2^+(\Gamma)$ разложение $x = x^- + x^+$ на компоненты $x^- \in X^-(\Gamma)$, $x^+ \in X_1^+(\Gamma)$ в прямой сумме (3.3) с $X^+(\Gamma) = X_1^+(\Gamma)$ и положив

$$(x, u) = (x^-, u) + (x^+, u) = (x^+, u^+);$$
 (3.7)

— поясним, для решения $u \in \mathbf{W}(S)$ однородного уравнения (3.1) должно быть $(x^-, u) = 0$.

Рассмотрим общую граничную задачу (3.1), (3.2) с базисной системой $\{x_k\}$ в граничном подпространстве $X^+(\Gamma)$, определяющем в (3.2) тип граничных условий— мы имеем в виду, что каждый элемент $x \in X^+(\Gamma)$ однозначно представим рядом

$$x=\sum c_k x_k.$$

сильно сходящимся в гильбертовом $X^+(\Gamma)$ с коэффициентами c_b ,

$$\sum_{k} |c_k|^2 \simeq |x|^2, \quad x \in X^+(\Gamma),$$

которые могут быть определены формулой

$$c_k = (x, u_k)$$

по сопряженной системе $\{u_k\}$ в сопряженном $W(S) = X(S)^*$,

$$(x_j, u_k) = \begin{cases} 1, & j = k, \\ 0, & j \neq k, \end{cases}$$
 (3.8)

поясним: для любого линейного непрерывного функцио-

нала u=(x, u) на $x=\sum c_k x_k$ мы имеем сходящийся ряд $\sum c_k (x_k, u) = (x, u),$

и это равенство при $u = u_i$ дает $c_i = (x, u_i)$.

Рассматривая (3.8) как граничные условия типа $X^+(\Gamma)$ для детерминированных функций $u=u_k\in W(S)$, задаваемые с помощью базисной системы пробных $x=x_j\in X^+(\Gamma)$, при каждом k мы можем в качестве элемента сопряженной системы $\{u_k\}$ взять единственное решение $u=u_k$ однородного уравнения (3.1). Возьмем базисную систему $\{u_k\}$ таких решений детерминированной граничной задачи (3.1), (3.2) типа $X^-(\Gamma)$ и рассмотрим общую граничную задачу этого типа при произвольных граничных условиях, заданных на базисной системе граничных пробных $x_k \in X^+(\Gamma)$ с помощью произвольных

$$(x_h, u) = (x_h, u^+) = \xi_h, \quad \sum_h E |\xi_h|^2 < \infty.$$

Теорема. Общее решение граничной задачи (3.1), (3.2) представимо (сильно) сходящимся рядом

$$u = \sum_{k} \xi_k u_k \tag{3.9}$$

по базусной системе детерминированных решений $\{u_k\}$ с данными в граничных условиях величинами $\{\xi_k\}$.

В самом деле, обратившись к общей формуле (3.6) и взяв разложение

$$x^{+} = \sum c_{h} x_{h} = \sum_{h} (x^{+}, u_{h}) x_{h}$$

для компоненты $x^+ \in X^+(\Gamma)$ произвольной пробной функции $x \in X(S)$, получим, что

$$(x, u) = (x^+, u) =$$

$$= \lim_{n \to \infty} \sum_{h \le n} c_h(x_h, u) = \lim_{h \le n} \sum_{k \le n} (x^+, u_k) \xi_k =$$

$$= \lim_{n \to \infty} \left(x^+, \sum_{k \le n} \xi_k u_k \right) = \lim_{n \to \infty} \left(x, \sum_{k \le n} \xi_k u_k \right)$$

есть предел в $H=\mathscr{L}_2(\Omega)$ для функций

$$u^{(n)} = \sum_{k \ge n} \xi_k u_k, \tag{3.10}$$

точнее, для разности $u - u^{(n)}$ с

$$(x, u - u^{(n)}) = (x^{+} - \sum_{k \le n} c_k x_k, u)$$

мы имеем

$$E[(x, u - u^{(n)})]^2 \le C |x^+ - \sum_{k \le n} c_k x_k|_X^2. \quad \Box$$
 (3.11)

 2° Гладкость и продолжаемость решений; устранимые особенности. Обобщенную функцию $u \in D^*$ в области S

$$u = (\varphi, u), \quad \varphi \in D = C_0^{\infty}(S),$$

условимся называть L-гармонической, если она удовлетворяет однородному уравнению (3.1) с дифференциальным оператором L. Так, в представлении (3.9) решения $u=\xi\in \hat{W}(S)$ общей стохастической граничной задачи (3.1), (3.2) мы имеем его разложение по детерминированным L-гармоническим составляющим $u_k \in W(S)$. В связи с этим отметим важный класс гипоэллиптических операторов L, для которых всякое обобщенное решение $u \in D^*$ уравления Lu = 0 в S представляется c оответственно гладкой внутри области S функцией $u=u(t), t \in S$; классическим примером может служить оператор Лапласа $L=\Delta$, для которого всякое обобщенное решение $\cdot u \in D^*$ уравнения Lu = 0 в S представляется гармонической функцией u=u(t), $t \in S$. Естественно здесь возникает вопрос о соответствующей гладкости решения $u = \xi \in \mathbf{W}(S)$ общей стохастической граничной задачи (3.1), (3.2). На этот вопрос сразу же можно ответить, имея в виду надлежащую модификацию $\xi = \xi_{\omega}$ с реализациями $u = \xi_{\omega} \in D^*$, представленными обобщенными функциями

$$\xi_{\omega} = (\varphi, \xi_{\omega}). \quad \varphi \in D = C_0^{\infty}(S).$$

при всех $\omega \in \Omega$: реализации $\xi_{\omega} \in D^*$ являются регулярными функциями $\xi_{\omega} = \xi_{\omega}(t)$, $t \in S$, той степени гладкости, которая гараптируется соответствующей гипоэллиптичностью дифференциального оператора L в уравнении (3.1). Это есть следствие следующего общего предложения.

 $T \, e \, o \, p \, e \, m \, a$. Peanusauuu решения $u = \xi \in W(S)$ общей стохастической граничной задачи (3.1), (3.2) являются L-гармоническими функциями.

Речь здесь идет о надлежащей модификации обобщенной случайной функции ξ с реализациями $u=\xi_{\omega} \in D^*$, удовлетворяющими обобщенному уравнению Lu=0 в области S (с дифференциальным оператором $L=\sum a_h \hat{\sigma}^k$. имеющим бесконечно-лифференцируемые коэффициенты).

Покажем как выбрать такую модификацию. Для счетной плотной в пространстве $D=C_0^\infty(S)$ сово-купности пробных $\varphi \equiv D$ мы при всех $\omega \equiv A$ из некоторого $A \equiv \Omega$ меры P(A)=1 имеем

$$(L^*\varphi, u) = (L^*\varphi, \xi_\omega) = 0,$$

и это равенство для исходно взятых $u=\xi_{\omega}\in D^*$ по непрерывности продолжается на все $\phi\in D$, что дает нам $u=\xi_{\omega}$ при каждом $\omega\in A$ как обобщенное решение уравнения Lu=0. Подправив $\xi=\xi_{\omega}$ для остальных $\omega\in\Omega$ —скажем, положив $\xi_{\omega}=0$, мы получим нужную модификацию $\xi=\xi_{\omega}\in D^*$, $\omega\in\Omega$. \square

Рассмотрим такое свойство, как продолжаемость решения $u=\xi\in \mathbf{W}(S)$ в более широкую область $S_0\supseteq S$ с сохранением класса $u=\xi\in \mathbf{W}(S_0)$. По самому определению, $\mathbf{W}(S)$ есть сужение возникающего в общей схеме (1.1). (1.2) функционального класса $W=\mathbf{W}(T)$ в области $T\supseteq S$, так что указанного типа продолжение всегда возможно в любую область S_0 , $S\subseteq S_0\subseteq T$.

Пменно. $u \in \mathbf{W}(S)$ в нашей схеме отождествляется с линейной непрерывной функцией $u=(x,\ u)$ на пробных $x \in X(S)$ из подпространства $X(S) \subseteq X = \check{X}(T)$ в гильбертовом Х. которая всегда может быть продолжена до линейной непрерывной функции u = (x, u) на всех $x \in X$, определяющей $u \in \mathbf{W} = \check{W}(T)$ — скажем, всегда можно взять функцию (x, u) = 0 на ортогональном дополнении $\kappa X(S)$ и линейно доопределить ее на всех В частности, напомним, что соболевские пространства тина $\mathbf{W}(S) = \mathbf{W}_{\mathbf{2}}^p(S), S \subseteq T$, в нашей схеме с выбранным $T \subseteq R^+$ определяются как соответствующее сужение престранства $\mathbf{W} = \mathbf{W}_2^p(T)$, в котором детерминированные функции образуют $W = \mathring{W}_2^p(T) = \left[C_0^\infty\left(T\right)\right],$ являющееся замыканием функций $u \in C_0^\infty(T)$ по соболевской норме $\|u\|_p$; уточним, что в сопряженном $X=W^*=\mathring{\mathbb{W}}_2^{*-p}(T)$ мы выделяем подпространство $X(S) = W_2^{-p}(S)$ всех обобщенных функций $x \in X$ с носителями $\sup x \in [S]$ в замыкании области S и определяем $u \in \mathbf{W}(S)$ как с уже и ие линейной непрерыдной функции $u = (x, u), x \in X$, на подпространстве X(S), которое оказывается замыканием $C_0^{\infty}(S)$ в $X, X(S) = [C_0^{\infty}(S)]$. Что нозволяет рассматривать общие $u \in \mathbf{W}(S)$ как обобщенные (случайные) функции $u = (x, u), x \in C_0^{\infty}(S)$.

Продолжаемость решения $u = \xi \in \mathbf{W}(S)$ общей стахастической граничной задачи (3.1), (3.2) позволяет голучить это решение, рассматривая соответствующую граничную задачу в более широкой области $S_0 = S$, которая по тем или иным причинам может быть более предпочтительной (скажем, S_0 имеет более гладкую границу и т. п.). Пусть S получается из S_0 исключением некаторого (замкнутого) множества γ ,

$$S = S_0 \setminus \gamma$$
.

Условимся называть γ устранимой особенностью, езли всякое решение однородного уравнения (3.1) в S, иначеговоря, всякая L-гармоническая в области S функция $u \in \mathbf{W}(S)$, продолжаемая, как мы знаем, до функции $u \in \mathbf{W}(S_0)$, при любом продолжении дает L-гармоническую функцию в области S_0 (удовлетворяющую в S_0 уравнению Lu=0). Спрашивается, как охарактеризфать множество γ , являющееся устранимой особенностью. На этот вопрос можно сразу же ответить следующим образом, обратившись к замыканию $\begin{bmatrix} C_0^{\infty}(S) \end{bmatrix} = \mathcal{F}(S)$ в соответствующем пространстве \mathcal{F} , где, согласно нашему общему подходу (1.1), (1.2), действует дифференциальный оператор L^* . Именно, свойство L-гармоничности в области S означает, что

$$(L^*g, u) = 0, \quad g \in \mathcal{F}(S),$$

и обязательность такого свойства в области $S_0 \cong S$ дикгует равенство

$$[L^*\mathcal{F}(S_0)] = [L^*\mathcal{F}(S)],$$

которое будет выполнено при условии равенства

$$\left[C_0^{\infty}(S)\right] = \left[C_0^{\infty}(S_0)\right] \tag{3.12}$$

в \mathcal{F} , причем указанное условие необходимо в случае невырожденного на подпространстве $\mathcal{F}(S) \subseteq \mathcal{F}$ оператора L^* .

Напомним, что в нашей схеме с оператором $L=\mathcal{P}\geqslant 0$ з соответствующем пространстве $\mathcal{F}=W=W(T)$ мы всегда имеем $L^*=L$ унитарным, а для общего оператора L в $\mathcal{F}=\mathcal{L}_2(T)$ невырожденность L^* на подпространстве $\mathcal{F}(S)=\mathcal{L}_2(S)$ в области S с замыканием $[S] \subseteq T$ можно считать случаем общего положения—см. по этому поводу (2.16).

Сформулпруем указанный в (3.12) результат*).

Теорема. Множество у представляет устранимую особенность для L-гармонических функций, когда $C_0^\infty(S_0\setminus V)$ является плотным в $\mathcal{F}(S_0)=[C_0^\infty(S_0)].$ что является необходимым для устранимости у в случае дифференциального оператора L с невырожденным L^* на $\mathcal{F}(S_0)$.

Как следствие, для дифференциального оператора L в пространстве $\mathcal{F}=\mathcal{L}_2$ получается, что всякое (замкнутое) множество у лебеговой меры 0 представляет для L-гармонических функций устранимую особенность.

Произлюстрируем это на простейшем примере оператора L=d/dt в пространстве $\mathscr{F}=\mathscr{L}_2(T)$ на полупрямой $T=(0,\infty)$. Когда речь идет о конечном интервале $S_0=(c,b)\subset T$ с особой точкой $\gamma,\ a<\gamma< b;$ здесь для $S=S_0\setminus\gamma$ мы имеем соболевский класс $W(S)=W_2^1(S)$ как с ужение соответствующего $W(S)=W_2^1(S_0)$, так что всякая L-гармопическая в $S=S_0\setminus\gamma$ функция $u\in W_2^1(S)$ подчиняется требованию продолжаемости до непрерывной функции $u\in W_2^1(S_0)$ и есть постоянная на в с е м интервале $S_0=(a,b)$.

В противоположность этому, скажем, для оператора $L=\mathcal{P}=-d^2/dt^2$ в соответствующем пространстве $\mathcal{F}=W=W(T)$ с $W(S_0)=W_2^1(S_0)$ особая точка γ уже не является устранимой—каждая ломаная, представляющая функцию $u\in W_2^1(S_0)$, является L-гармонической в

^{*)} В анализе и теории дифференциальных уравнений имеются самые разные постановки вопросов об «устранимых особенностях» для тех или иных функциональных классов — укажем для примера Hedberg L. I. Spectral syntesis in Sobolev spaces and uniqueness of solutions to the Dirichlet problem // Acta Math.— 1985.— V. 147.— P. 237—264.

 $S = S_0 \setminus \gamma$, но не является таковой во всем интеревле $S_0 = (a, b)$. \square

Как уже отмечалось, решение $u \in W(S)$ общей граничной задачи (3.1), (3.2) в области $S = S_0 \setminus \gamma$, продолжаемое до функции $u \in W(S_0)$ в S_0 , может быть получено путем решения надлежащей граничной задачи в области S_0 . В случае устранимой особенности γ любое продолжение $u \in W(S_0)$ будет удовлетворять в S_0 тему же однородному уравнению (3.1); в случае произвольного γ в области S_0 придется иметь дело с неоднородным уравнением

$$Lu = f, (3.13)$$

для которого правая часть f и соответствующие граничные условия на $\Gamma_0 = \partial S_0$ определяются исходными граничными условиями (3.2) на $\Gamma = \partial S$. Переход от $S = S_0^2 \backslash \gamma$ к новой области $S = S_0$ наиболее просто выглядит для граничных условий (3.2), преобразованных к типу $X^+(\Gamma) = X_0^+(\Gamma)$; по поводу преобразования граничных условий см. (3.7). Остановимся на этом подробнее для уравнения (3.1) в схеме с общим дифференциальным оператором L в пространстве ${\mathscr F}={\mathscr L}_2(\hat T)$ при таком $T \subseteq R^d$, что сопряженный оператор L^* является невырожденным на F. Тогда, как мы знаем, граничное бодпространство $X_0^+(\Gamma)$ состоит из обобщенных пробных функций вида $x=L^*g$ с $g\in \mathscr{L}_2(T)$, где g=0 в области S и $L^*g=0$ в дополнительной области $S^+=T\setminus [S]$ см. (2.9), (2.12). В соответствии с этим граничные условня (3.2) тина $X^+(\Gamma)=X_0^+(\Gamma)$ определяют на указанных $g \in \mathcal{L}_2(T)$ функцию f,

$$(g, f) \equiv (x, u^+) = (x, u), \quad x = L^*g,$$

которая может быть продолжена до линейной непрерывной на всем $\mathcal{F} = \mathcal{L}_2(T)$ функции f = (g, f), равной 0 в области S, (g, f) = 0 при $g \in \mathcal{L}_2(S)$. Формула $(x, u) = (g, f), \quad x = L^*g, \quad g \in \mathcal{L}_2(T),$

задает продолжение определяемой в (3.1), (3.2) функции $u \in \mathbf{W}(S)$ на всю область T, и для этого продолжения $u \in \mathbf{W}(S_0)$ в области $S_0 \subseteq T$ мы имеем указанное в (3.13) дифференциальное уравнение с определяемыми на границе $\Gamma_0 = \partial S_0$ граничными условиями

$$(x, u) = (x, u^+) \equiv (g, f), \quad x = L^*g \in X_0^+(\Gamma_0), \quad (3.14).$$

тог эке типа, что и исходные условия (3.2) с $X^+(\Gamma) = X_0^+(\Gamma)$

Отметим, что общей моделью граничной задачи (3.1), (3.2) с граничными условиями указанного в (3.14) типа $X^+(\Gamma) = X_0^+(\Gamma)$ может служить обобщенное случайное поле $u = \xi \in W$, описываемое в соответствующей области $T \subseteq R^d$ общим уравнением Lu = f со случайным источником f в не рассматриваемой области $S \subseteq T$, точнее, с f = 0 в S (см. по этому поводу \S 1); поясним: в области S это $u = \xi$ удовлетворяет однородному уравнению (3.1), для кот рого граничные условия (3.2) могут быть сформироваем по даиному f как

$$(x, u) = (x, u^+) \equiv (g, f)$$
 (3.15)

 \mathfrak{C} домощью обобщенных пробных $x=L^*g$, отвечающих $g\in \mathscr{L}_2(T), g=0$ в S п $L^*g=0$ в S^+ .

Для общей граничной задачи (3.1), (3.2) с граничными условиями типа (3.15) особенно наглядно выделяется непрерывная зависим ость решения $u \in \mathbf{W}(S)$ от соответствующего f, которая, например, в детерминированных задачах с $f \in \mathcal{L}_2(T)$ позволяет получить сколь угодио точное приближение для искомого $u \in \mathbf{W}(S)$. заменив в рассматриваемой задаче f на достаточно гладкую функцию, надлежаще приближающую f в $\mathcal{L}_2(T)$.

 3° Продолжаемость и предельное поведение решений. Рассмотрим следующую модельную задачу. Представим, что в области $T \subseteq R^d$ имеется случайное поле, которое описывается обобщенной случайной функцией $u = \xi$, связанной со случайным источником $f = \eta$ (действующим в не области $S \subseteq T$) дифференциальным уравнением

Lu = f

с единственным решением $u=\xi\in W$ в соответствующем классе W (см. § 1); рассматривая это уравнение в схеме с оператором L в пространстве $\mathscr{F}=\mathscr{L}_2(T)$, имеющем невырожденный на \mathscr{F} сопряженный оператор L^* , в область $S\equiv T$ можно описать $u=\xi\in W(S)$ как единственное решение граничной задачи (3.1), (3.2) с f=0 в S и граничными условиями типа $X^+(\Gamma)=X_0^+(\Gamma)$ на границе $\Gamma=\partial S-\mathrm{cm}$. (3.15). Представим теперь, что область S имеет сложную сильно гранулированную структуру, скажем, она получается из некоторой простой

области S_0 как $S=S_0$ \у исключением замкнутого у. состоящего из большого числа мелких гранул, илотно распределенных в S_0 .

Спрашивается, а что получится, если понытаться решить аналогичную граничную задачу (3.1), (3.2) в простой области S_0 , рассматривая ее при «в целом малом ужкак своего рода приближение для области $S = S_0 \setminus \gamma$?

Как мы знаем, решение исходной граничной задачи (3.1), (3.2) может быть получено с помощью решении соответствующей граничной задачи (3.13), (3.14) \approx области S_0 , и непосредственио видио, что если лебетова мера mes γ в R^3 достаточно мала, то правая часть f в уравнении (3.13),

$$t = wt$$
, $w = 1$.

изляется соответственно малой, и соответственно будет малой разность между решением $u \in \mathbf{W}(S_0)$ в (3.13), (3.14) и решением однородной граничной задачи (3.1), (3.2) в области S_0 ; по новоду произведения wf с индикатором w=1, множества γ нужно нояснить, что для обобщенной случайной функции $f=(g,\ f)$ с пробными $g \in \mathcal{F} = \mathcal{L}_2(T)$ определено умножение на огранивенные функции w, а именно

$$(g, wf) = (wg, f), g \in \mathcal{F}.$$

Можно поставить общий вопрос о предельном поведении решений $u=u_n$ граничной задачи (3.1), (3.2) во все более сложных областях $S=S_n$,

$$S_n = S_0 \setminus \gamma_n$$

(со все более плотным в S_0 множеством $\gamma = \gamma_n$ из все более мелких гранул)*). Именно, при каких условиях на γ_n имеется слабый/сильный предел решений $u = \lim u_n$ и, если он есть, является ли предельная функция $u = \lim u_n$ решением соответствующей граничной задачи? Уточним, что мы имеем в виду слабую/сильную сходимость $u_n \in W(S_0)$ как функций со значениями в гильбертовом пространстве $H = \mathcal{L}_2(\Omega)$ случайных величин на вероят-

^{*)} Вопросы такого рода рассматривались в самой разной постановке — см., например, Марченко В. А., Хруслов Е. Я. Краевые задачи в областях с мелко зеринстой границей. — Глевт Наукова думка, 1974; Рарапісоваи G., Varadhan C. R. S., Diffusions in regions with many small hols/Notes Control. — Inform. Sci.—1980.— V, 25.

ностном Ω . где каждая функция $u = u_n$, исходно определевная в своей области $S_n = S_0 \setminus \gamma_n$, доопределена в общей при всех n области S_0 как решение соответствующег э уравнения (3.13) вида

$$Lu = w_n f$$

(3.16)

 ${f c}$ индикатором $w_n=1_{\gamma_n}$ множества γ_n при гранциных условиях (3.14).

Согласно общей формуле (3.4), от переменного у зависит лишь та часть в $u=u_n$, что является решением уразнения (3.16) при нулевых граничных условиях, кот фая для каждой пробной функции $x \in X(S)$ в ее разлож нии $x = x^- + x^+$ на $x^- = \hat{L}^*g$, $g \in \mathcal{F}(S_0) = \mathcal{L}_2(S_0)$, и $x^+ \in X_0^+(\Gamma_0)$ дает

$$(x^-, u_n) = (w_n g, f).$$

 ${f B}$ случае, например, белого шума $f=\eta$ из этой формулы непосредственно видно, что спльная сходимость решений равносильна сильной сходимости функций $w_n g$ для каждого g в пространстве $\mathscr{L}_2(S_0)$; видно также, что ири указанной сходимости $w_n g$ сильная сходимость решений будет в случае любого источника f. Легко проверыть также, что сильная сходимость $w_n g = 1_{\nu_n} g$ при каждом $otin \mathcal{L}_2(S_0)$ равносильна паличию такого предельного

$$\gamma = \lim \gamma_n$$

множества

(3.17)

что лебегова мера $\operatorname{mes} [(\gamma_n \circ \gamma) \cap B] \to 0$ для симметрической разности $\gamma_n \circ \gamma = (\gamma_n \setminus \gamma) \cup (\gamma \setminus \gamma_n)$ при каждом отрани $B \subseteq S_0$, причем в качестве предельной функции при сходимости $w_n g$ будет $wg = \lim w_n g$ с индикат пом

$$w = 1$$

предельного множества у: поясним: в силу равномерной но и ограниченности

$$\|w_n g\|_{\mathscr{L}_2} \leqslant \|g\|_{\mathscr{L}_2}$$

сходимость $w_n g$ при всех $g \in \mathscr{L}_2(S_0)$ равносильна сходимости при $g=1_B$ для полной в $\mathscr{L}_2(S_0)$ системы видикаторов ограниченных $B \subseteq S_0$. Спльная сходимость $w_n g \rightarrow$ $\rightarrow w \mathcal{I}$ при всех $g \in \mathcal{L}_2(S_0)$ дает

$$\lim (g, w_n f) = \lim (w_n g, f) = (wg, f) = (g, wf),$$

и в соответствии с этим сильный предел решений $\lim u_n = u$, определяющий

$$\lim (x^{-}, u_{n}) = \lim (g, w_{n}f) = (g, wf) = (x^{-}, u),$$

$$x \in X(S_{0}),$$

представляет собой функцию $u \in \mathbf{W}(S_0)$, которая есть решение предельного для (3.16) уравнения

$$Lu = wt \tag{3.18}$$

при имеющихся у нас грапичных условиях (3.14).

Перейдем тенерь к слабой сходимости $u_n \in \mathbf{W}(S_0)$, имея в виду слабую сходимость величин (x, u_n) в гильбертовом пространстве $H = \mathcal{L}_2(\Omega)$ на вероятностном Ω . Наличие такой сходимости при любом f, в частности при детерминированных $f \in \mathcal{L}_2(S_0)$, влечет схедимость детерминированных величин $(w_n g, f)$, которая при $f = g = 1_B$ дает предел

$$\lim \max (\gamma_n \cap B) = \int_{\mathbf{R}} w(t) dt \tag{3.19}$$

для каждого ограниченного $B \subseteq S_0$; поясиим: указанный предел определяет аддитивную функцию множеств $B \subseteq S_0$, абсолютно непрерывную относительно лебетьсой меры mes B и представимую указанным в (3.19) интегралом от соответствующей илотности w. $0 \le w \le 1$. Легко видеть, что наличие предела (3.19) для каждого ограниченного множества $B \subseteq S_0$ означает также существование

$$\lim (w_n g, f) = (wg, f)$$

для любых f, g из полной системы индикаторных функций $\{1_B\}$, и в силу равномерной ограниченности

$$\|w_n g\|_{\mathcal{L}_2} \leqslant \|g\|_{\mathcal{L}_2}$$

это равносильно слабой сходимости $w_n g \to w g$ для наждого g в $\mathcal{L}_2(S_0)$. В свою очередь такая сходимость при любом случайном источнике f и произвольном $\eta \in H$ дает сходимость линейного непрерывного функционала

$$E(w_n g, f) \eta \rightarrow E(w g, f) \eta$$

от $w_n g \to w g$, а это означает слабую сходимость решений $u_n \to u$ к функции $u \in \mathbf{W}(S_0)$, определяемой как

$$(x^-, u) = (wg, f), \quad x \in X(S_0),$$

и представляющей, согласно общей формуле (3.4), решение предельного для (3.16) уравнения (3.18) с граничными условиями (3.14).

Добавим к этому еще тот факт, что плотность w = w(t), $t \in S_0$, в предельном соотношении (3.19), для каждого ограниченного $B \subseteq S_0$ при почти всех $t \subseteq B$ определяемая как слабый предел

$$w1_B = \lim w_n 1_B = \lim 1_{\gamma_n \cap B}$$

может быть произвольной функцией w, $0 \le w(t) \le 1$. В самом деле, возьмем систему непересекающихся множеств B_n^j , $j=0,1,\ldots n$, которая асимитотически иолна в том смысле, что для любого $g=1_{\mathbb{Z}}$ из полной в $\mathcal{L}_2(S_0)$ системы $\{1_B\}$ найдутся соответствующие объединения $B_n=\bigcup B_n^j$ с $1_{B_n} \to 1_B$. Возьмем течерь произвольную функцию w, $0 \le w \le 1$, и для пепересекающихся

$$C_n^k = \left\{t: \frac{k-1}{n} < w(t) \leqslant \frac{k}{n}\right\}, \quad k = 0, \ldots, n.$$

образуем

$$A_n^{jh} = B_n^j \cap C_n^h$$
, j. $k = 0, ..., n$.

Наконец, выберем замкнутые $\gamma_n^{jk} \subseteq A_n^{jk}$ с лебеговой мерой mes $\gamma_n^{jk} = \frac{k}{n} \, \mathrm{mes} \, A_n^{jk} + o \, (n^{-2})$

и положии

$$\gamma_n = \bigcup_{i,k} \gamma_n^{j,k}$$
.

Очевидно, что для любого $g=1_B=\lim 1_{B_n}$ с соответствующим объединением $B_n=\bigcup A_n^{jk}$

 $\lim \operatorname{mes} (\gamma_n \cap B_n) = \lim \sum \frac{k}{n} \operatorname{mes} A_n^{jk} =$

$$=\lim_{B_{n}}\int_{B}w\left(t\right) dt=\int_{B}w\left(t\right) dt.$$

Подведем итог.

Теорема. Для слабой/сильной сходимости решений в областях $S_n = S_0 \backslash \gamma_n$ (при произвольном случайном источнике f вне S_n) необходимо и достаточно условие (3.11)/(3.17): при этом предельная для этих решений функция получается из решения $u \in \mathbf{W}(S_0)$ предельного уравления (3.18) в области S_0 с предельной для индикатороз $w_n = 1_{\gamma_n}$ плотностью $w = \lim w_n$, которая в зависимость от γ_n . $n \to \infty$, может быть произвольной функцией $0 \le w(t) \le 1$, $t \in S_0$.

Рассмотренную выше модель предельного поведения решений граничных задач в сильно гранулированных областях вида $S_n = S_0 \backslash \gamma_n$ можно иополнить случаем, когда множества γ_n имеют хаотическую структуру, моделируемую некоторым стохастическим механизмом (независимого от случайного источника f).

Представим, например. что $\gamma_n = \bigcup \gamma_n^k$ при каждом n есть объединение шарообразных гранул γ_n^k радпуса r в R^d , $r = \lambda/n$ при $n \to \infty$ и постояниом λ , с центрами в случайных точках $\tau_k \in S_0$, независимых и распределенных в области S_0 с плотностью вероятности p(t), $t \in S_0$. Такого рода хаотическая структура γ_n при $n \to \infty$ дает характерный пример соотношения (3.19) со всюду положительной плотностью w = w(t), $t \in S_0$; при взятых выше параметрах она *имеет вид*

$$w(t) = 1 - e^{-\lambda \sigma^2 p(t)}, \quad t \in S_0.$$
 (3.20)

где σ^2 — объем единичного шара в R^d . Покажем это *).

Используя вероятностное пространство Ω , где определены случайные

$$\tau_k = \tau_k(\omega), \quad k = 1, 2, \ldots,$$

обратимся к измеримой по совокупности переменных $(\omega,\ t)$ функции

$$1_{\gamma_n}(t) = 1 - \prod_{k=1}^n [1 - 1_{\gamma_{kn}}(t)]$$

^{*)} См. Арато Н. Об одной предельной теореме для обобщенных гауссовских случайных полей, заданных стохастическими дифференциальными уравнениями в частных производных // Теория верояти, и ее примеп.— 1989.— Т. 24.— С. 409—411.

с индикаторами

$$\mathbf{1}_{\gamma_{kn}}(t) = \mathbf{1}_{\{(\omega,t): |\tau_k(\omega)-t| \leq r\}},$$

при каждом $\omega \in \Omega$ представляющей индикатор 1 γ_n (t), $t \in \mathbb{R}^d$, случайного множества

$$\gamma_n = \bigcup_{k=1}^n \gamma_{kn} \subseteq R^d,$$

которое в пересечении с ограниченным $B \subseteq S_0$ имеет меру

$$\mu_n = \operatorname{mes}(\gamma_n \cap B) = \int_{\mathcal{D}} 1_{\gamma_n}(t) dt.$$

Установим среднеквадратичную сходимость *)

$$\lim_{n\to\infty}\int_{B}1_{\gamma_{n}}(t)\,dt=\int_{B}\left[1-e^{-\lambda\sigma^{2}p(t)}\right]dt.$$

Рассмотрим случайные величины

$$\mu_n = \int_B \prod_{k=1}^n \left[1 - 1_{\gamma_{kn}}(t) \right] dt.$$

Нам нужно установить среднеквадратичную сходимость

$$\lim \mu_n = \int_B e^{-\lambda \sigma^2 p(t)} dt$$

Используя независимость случайных та, получаем

$$E\mu_n =$$

$$= \int_{B} E \prod_{k=1}^{n} \left[1 - 1_{\gamma_{kn}}(t)\right] dt = \int_{B} \prod_{k=1}^{n} \left[1 - E 1_{\gamma_{kn}}(t)\right] dt \sim$$

$$\sim \int_{B} \left[1 - \frac{\lambda \sigma^{2} p(t)}{n}\right]^{n} dt \sim \int_{B} e^{-\lambda \sigma^{2} p(t)} dt,$$

поскольку

$$E1_{\gamma_{kn}}(t) = \int_{0}^{\infty} p(u) du \sim \frac{\lambda \sigma^{2} p(t)}{n}$$

^{*)} Простые оценки позволяют установить также и сходимость при почти всех $\omega \in \Omega$.

при $r^d = \lambda/n$ ($n \to \infty$). Одновременно имеем

$$E\mu_n^2 = \iint_{B \setminus B} E \prod_{k=1}^n [1 - \gamma_{kn}(s)] |1 - \gamma_{kn}(t)| \, ds \, dt \sim$$

$$\sim \iint_{(B \setminus B) \cap \{|s-t| > 2r\}} \left[1 - \frac{\lambda \sigma^2 p(s)}{n} - \frac{\lambda \sigma^2 p(t)}{n} \right]^n \, ds \, dt \sim$$

$$\sim \iint_{B \setminus B} e^{-\lambda \sigma^2 p(s) - \lambda \sigma^2 p(t)} \, ds \, dt = \left[\int_{B} e^{-\lambda \sigma^2 p(t)} \, dt \right]^2,$$

что дает

$$E\mu_n^2 \sim (E\mu_n)^2$$

и доказывает среднеквадратичную сходимость

$$E |\mu_n - E\mu_n|^2 = E\mu_n^2 - (E\mu_n)^2 \to 0$$

при $n \to \infty$.

IJABAIII

СЛУЧАЙНЫЕ ПОЛЯ

§ 1. Вероятностные характеристики стохастических граничных задач

1° Среднее значение. Можно представить себе с лучайное поле ξ , возникающее в области $T \subseteq R^d$ как результат того или иного с лучайного источника η , с которым ξ связано обобщенным дифференциальным уравнением

 $L\xi = \eta, \tag{1.1}$

являясь единственным его решением $\xi \in W$ в соответствующем функциональном классе $W = \mathring{W}(T)$, или, скажем, уравнение (1.1) имеет место в области $S \subseteq T$, где помимо этого для случайного поля ξ на границе $\Gamma = \partial S$ имеются еще граничные условия, выраженные с помощью той или иной системы граничных пробных функций в форме

$$(x, \xi) = (x, \xi^+), \quad x \in X^+(\Gamma)$$
 (1.2)

— общие схемы такого рода и целый ряд важных примеров были предложены в гл. II.

Можно представить, например, что нас интересует решение $u \in W(S)$ детерминированной граничной задачи:

$$Lu = f \tag{1.3}$$

в области S,

$$(x, u) = (x, u^+), \quad x \in X^+(\Gamma),$$
 (1.4)

на границе $\Gamma = \partial S$ (где граничные условия могут быть заданы и в какой-то другой эквивалентной форме), но по тем или иным обстоятельствам нам приходится иметь дело с соответствующей стохастической граничной задачей (1.1), (1.2), возникающей в результате появления дополнительных возмущений случайного характера, дающих вместо детерминированных f, u^+ в (1.3), (1.4) соответствующие η , ξ^+ в (1.1), (1.2) со средними значения

ми $E\eta=f,\ E\xi^+=u^+$ — уточним, что здесь имеются в виду функции

$$E(\varphi, \eta) = (\varphi, I), \quad \varphi \subseteq C_0^{\infty}(S).$$

и

$$E(x, \xi^+) = (x, u^+), \quad x \in X^+(\Gamma);$$
 понятно, что интересующее нас решение $u \in W(S)$ гра-

ничной задачи (1.3), (1.4) будет средним значением u=

 $=E\xi$ случайного поля $\xi\in W(S)$ в области S, описываемого стохастической моделью (1.1)-(1.2). Для нее. как и для всякой другой теоретико-вероятностной схемы, возникают задачи определения тех или иных вероятностных характеристик описываемого этой схемой случайного объекта $\xi-$ в предлагаемой модели (1.1), (1.2) одной из важнейших характеристик такого рода (наряду с уже упоминавшимся средним значением) является корреляционная функция случайного поля ξ .

 2° Корреляционная функция. Для обобщенного случайного поля $\xi = (\varphi, \xi)$ с пробными $\varphi \in D$ из пространства $D = C_0^{\infty}(S)$ мы ввели корреляционный оператор—обозначим его Q,— при каждом $y \in C_0^{\infty}(S)$ задающий корреляционную функцию $Qy \in D^*$,

$$Qy = (\varphi, Qy), \quad \varphi \subseteq D,$$

которая (при нулевом среднем $E(\phi,\ \xi)=0)$ определяет корреляцию

$$E(\varphi, \xi)(\overline{y, \xi}) = (\varphi, Qy).$$

Рассматривая общую стохастическую модель (1.1), (1.2), когда случайное поле $\xi \in W(S)$ описывается с помощью пробных $x \in X(S)$ из надлежащего гильбертова пространства $X(S) \supseteq C_0^{\infty}(S)$, удобно ввести корреляционную функцию Qy для каждого $y \in X(S)$, положив

$$Qy = (x, Qy) = E(x, \xi) (\overline{y, \xi}), \quad x \in X(S).$$

что определяет ее как функцию $Qy \in W(S)$ из соответствующего функционального класса $W(S) = X(S)^* -$ здесьмы считаем, что детерминированная часть в (1.1), (1.2) уже исключена, и вместе с $E\eta = 0$, $E\xi^+ = 0$ мы имеем нулевое среднее $E(x, \xi) \equiv 0$, $x \in X(S)$.

Допустим, что случайный источник η в (1.1), представленный обобщенной случайной функцией $\eta = (\varphi, \eta)$, $\varphi \in \mathcal{C}_0^\infty(S)$, имеет корреляционный оператор R. Спра-

шивается, как найти корреляционный оператор/корреляционную функцию случайного поля ξ ? Отвечая на этот вопрос, остановимся на случае, когда действие источника η в (1.1) внутри области S не коррелировано/независимо от предписанных для ξ граничных условий (1.2) на границе $\Gamma = \partial S$. В этом случае

$$\xi = \xi^- + \xi^+$$

есть сумма некоррелированных/независимых ξ^- и ξ^+ . па которых $\xi^- \in W(S)$ получается как решение уравнения (1.1) с нулевыми граничными условиями (1.2), а ξ^+ — как решение однородного уравнения (1.1) с $\eta=0$ при данных в (1.2) общих граничных условиях — см. по этому поводу \S 2 гл. II; уточним, что

$$\xi^- = (x, \xi^-) = (x^-, \xi) = (g, \eta)$$

И

$$\xi^+ = (x, \xi^+) = (x^+, \xi) = (x^+, \xi^+)$$

для пробных $x \in X(S)$ при их представлении $x = x^- + x^+$ с компонентами $x^- = L^*g$, $g \in \mathcal{F}(S) = \left[C_0^\infty(S)\right]$, и $x^+ \in X^+(\Gamma)$. Понятно, что используя корреляционные функции Q^-y , Q^+y с корреляционными операторами Q^- , Q^+ компонент ξ^- , ξ^+ , мы можем получить

$$Qy = Q^-y + Q^+y$$

c $Q = Q^- + Q^+$.

Напомним, что $\eta = (\varphi, \eta)$ в уравнении (1.1) считается непрерывным по $\varphi \in C_0^{\infty}(S)$ относительно соответствующей нормы $\|\varphi\|_{\mathscr{F}}$, и мы имеем $\eta = (g, \eta)$ определенным при всех $g \in \mathscr{F}(S) = \left[C_0^{\infty}(S)\right]$; согласно этому, положим

$$Rg = (\varphi, Rg) = E(\varphi, \eta)(\overline{g, \eta}), \quad \varphi \subseteq D = C_0^{\infty}(S),$$

что определяет корреляционную функцию Rg (с корреляционным оператором R) как обобщенную функцию $Rg \in D^*$, непрерывную относительно пробных $\varphi \in D$ по норме $\|\varphi\|_{\mathcal{F}}$. Очевидно, что при любом пробном $y \in X(S)$ в его представлении $y = y^- + y^+$ с $y^- = L^*g$, $y^+ \in X^+(\Gamma)$, для корреляционной функции $u = Q^-y = Q^-y^- \in W(S)$ мы имеем

$$(L^*\varphi, u) = E(L^*\varphi, \xi) \overline{(L^*g, \xi)} =$$

$$= E(\varphi, \eta) \overline{(g, \eta)} = (\varphi, Rg), \quad \varphi \in C_0^{\infty}(S),$$

и непосредственно видно, что $u=Q^-y$ есть (единственпое) решение уравнения (1.3) с

$$f = Rg \tag{1.5}$$

при нулевых граничных условиях (1.4). Очевидно также, что корреляционная функция $u=Q^+y=Q^+y^+\in W(S)$ есть решение однородного уравнения (1.3) с f=0 при граничных условиях (1.4), определяемых корреляцией

$$(x. u^+) \equiv E(x, \xi^+) (y^+, \xi^+), \quad x \in X^+(\Gamma), \quad (1.6)$$

в стохастических граничных условиях (1.2). В целом же для источника η в (1.1) с корреляционным оператором R, действующим некоррелированно/независимо от граничных условий в (1.2), для любого пробного $y=L^*g+y^+$ с $g \in \mathcal{F}(S) = \left[C_0^\infty(S)\right]$ и $y^+ \in X^+(\Gamma)$ получается следующий результат.

Теорема. Корреляционная функция $u = Qy \in W(S)$ есть единственное решение уравнения (1.3) с функцией f вида (1.5) при граничных условиях (1.4) с функцией u^+ вида (1.6). \square

Рассмотрим общее уравнение (1.1) в области S = T, когда для определения $\xi \in \mathbf{W} = \mathbf{\hat{W}}(T)$ не требуется дополнительных граничных условий. Это уравнение, имеющее вид

$$\mathscr{P}\xi = \eta \qquad \qquad . \qquad (1.6)'$$

в нашей схеме с оператором $L=\mathscr{P}\geqslant 0$ в соответствующем пространстве $\mathscr{F}=W=W(T)$, как мы знаем, в схеме с общим оператором L в пространстве $\mathscr{F}=\mathscr{L}_2(T)$ эквивалентно уравнению (1.6)' с $\mathscr{P}=L^*L\geqslant 0$ и новым источником \mathfrak{q} , получающимся из исходного $\mathfrak{q}=(g,\mathfrak{q})$ в (1.1), определенного на всех $g\in\mathscr{L}_2(T)=[\mathscr{C}_0^\infty(T)]$. заменой $g=\mathfrak{q}$ на $L\mathfrak{q},\mathfrak{q}\in\mathscr{C}_0^\infty(T)$ — см. § 1 гл. II.

Правая часть $\eta = (\varphi, \eta)$ в (1.6)' является непрерывной по $\varphi \in C_0^\infty(T)$ относительно соответствующей нормы $\|\varphi\|_W$ в $\mathcal{F} = W$, и корреляционный оператор R, определяющий

$$E(\varphi, \eta)(\overline{v, \eta}) = (\varphi, Rv)$$

при всех $v \in W$, дает нам обобщенную функцию $Rv \in X$ из отвечающего W пространства обобщенных функций $X = \mathcal{P}W$. Перейдя от (1.1) к уравнению (1.6)'. при лю-

бом пробиом $x = \mathcal{P}v$ (с $v \in W$) для корреляционной финкции

$$u = (\varphi, u) - (\varphi, Qx) = E(\varphi, \xi)(\overline{x, \xi}), \quad \varphi \in C_0^{\infty}(T).$$

получим

$$(\mathcal{P}\varphi.\ u) = (\mathcal{P}\varphi.\ Qx) = E(\mathcal{P}\varphi,\ \xi) (\overline{\mathcal{P}v.\ \xi}) =$$

$$= E(\varphi,\ \eta) (\overline{v,\ \eta}) = (\varphi,\ Rv),$$

что определяет искомую корреляционную функцию как единственное решение $u \in W = \mathring{W}(T)$ дифференциального уравнения

$$\mathcal{P}u = f \tag{1.7}$$

с правой частью $f = Rv \subseteq X$ в области T.

Рассматривая общее уравнение (1.7), можно использовать f=Rv с $v-\varphi \in \widehat{C}_0^\infty\left(T\right)$ для определения искомой корреляционной функции u = Ox с $x = \mathcal{P}v$ при произвольном $v \in W$, воспользовавшись предельным нереходом

$$u = Q \mathcal{P} v = \lim Q \mathcal{P} \varphi$$

в пространстве W = W(T) с $\varphi \to v$.

Для примера выделим тот случай, когда в (1.6) им имеем псточник «белого шума» на W=W(T) с корреляоператором $R = \mathscr{P}$ — он возникает, скажем, в исходной модели (1.1) о общим L при источнике «белого шума» соответственно на $\mathscr{F}=\mathscr{L}_2(T)$; именно в этом случае уравнение (1.7) превращается в равенство

$$\mathcal{P}u = \mathcal{P}v$$
.

которое непосредственно дает

$$u = v$$
, $Qx = v$,

при каждом $x=\mathscr{P}v \in X$, так что в указанном случае корреляционным оператором случайного поля $\xi \in \mathbf{W}$ является

$$Q = \mathscr{P}^{-1}$$

— обратный оператор к \mathscr{P} : $W \to X$; поясним: равенство $(\varphi, Q\mathcal{P}v) = (\varphi, v), \quad \varphi \subseteq C_0^{\infty}(T),$

дает $Q\mathscr{P}v=v$ при всех $v\in W,\ x=\mathscr{P}v\in X$. Для иолу-

ограниченного оператора

$$\mathscr{P} \colon C_0^{\infty}(T) \to \mathscr{L}_{\mathfrak{d}}(T)$$

и его самосопряженного расширения $\mathscr{P}\colon \mathscr{D}_{\mathscr{P}} \to \mathscr{L}_2(T)$ с областью определения $\mathscr{D}_{\mathscr{P}} \subseteq W$ из уравнения (1.7) при $f=Rv \in \mathscr{L}_2(T)$ мы получаем u=Qf с помощью обратного к самосопряженному \mathscr{P} оператора $Q=\mathscr{P}^{-1}$ в пространстве

$$\mathscr{L}_2(T) \subseteq X = [\mathscr{L}_2(T)];$$

понятно, что рассматривая случайное поле $\xi = (x, \xi)$ на пробных $x \in \mathcal{L}_2(T)$, мы имеем

$$E(x, \xi)(\overline{y, \xi}) = (x, Qy)$$

с корреляционным оператором $Q=\mathscr{P}^{-1}$, являющимся ограниченным в пространстве $\mathscr{L}_2(T)$. Здесь, например, рассматривая нашу модель (1.1), (1.6) в ограниченной области $T\subseteq R^d$ с эллиптическим дифференциальным оператором \mathscr{P} порядка $2p,\ p>d/2$, мы имеем $Q=\mathscr{P}^{-1}$ интегральным оператором Гильберта — Шмидта.

$$Qf(t) = \int Q(s, t) f(s) ds, \quad t \in T.$$

с ядром Q(s, t), $\int \int |Q(s, t)|^2 ds dt < \infty$ — попятно, что

$$Q(s, t) = E\xi(s)\overline{\xi(t)}, \quad s, t \in T,$$

есть корреляционная функция величин $\xi(t) = (x, \xi)$, получающихся с помощью полной в X системы пробных дельта-функций $x = \delta_t$ в точках $t \in T$ и представляющих случайное поле $\xi \in \mathbf{W}$ как $\xi = \xi(t), t \in T$. \square

Все сказанное в отношении (1.7) фактически остается в силе (с формальной заменой T на произвольную область S = T) при рассмотрении случайного поля $\xi \in \mathbf{W}(S)$, которое описывается уравнением (1.6)' в области S = T и нулевыми граничными условиями

$$(x, \xi) = 0, \quad x \in X(\Gamma),$$

па границе $\Gamma = \partial S$. Имеппо, здесь, согласно формуле (2.15) гл. II, при любом пробном $x \in X(S)$ в его ортогональном разложении $x = x^- + x^+$ на $x^- = \mathcal{P}g \in X^-(S)$ с $g \in \mathring{W}(S) = \begin{bmatrix} C_0^\infty(S) \end{bmatrix}$ и $x^+ \in X(\Gamma)$ мы получаем

$$(x, \xi) = (\mathscr{P}\varphi, \xi) = (\varphi, \eta),$$

как и для уравнения (1.6)' в области T = S.

Это можно использовать при рассмотрении уравнения (1.6) ' в области $S \subseteq T$ с общими граничными условиями

$$(x, \xi) = (x, \xi^+), \quad x \in X(\Gamma),$$

когда случайный источник η внутри области S действует некоррелированию независимо от граничных условий на границе $\Gamma = \partial S$. Именно, $\xi \in \mathbf{W}(S)$ в этом случае можно представить в виде суммы $\xi = \xi^- + \xi^+$ некоррелированных независимых компонент ξ^- , $\xi^+ \in \mathbf{W}(S)$, из которых ξ^- получается как решение рассматриваемого уравнения при нулевых граничных условиях, а ξ^+ — как решение однородного уравнения с рассматриваемыми граничными условиями; корреляционный оператор Q случайного поля ξ представим суммой

$$Q = Q^- + Q^+,$$

где Q^- и Q^+ есть соответственно корреляционные операторы компонент ξ^- и ξ^+ , из которых относительно Q^- фактически уже говорилось выше, а Q^+ при любом пробном $x \in X(S)$ дает \mathscr{P} — гармоническую корреляционную функцию $u = Q^+x \in W(S)$, являющуюся решением обобщенной задачи Дирихле:

$$\mathcal{P}u = 0$$

в области S с граничными условиями

$$(y, u) = (y, u^+), \quad y \in X(\Gamma),$$

определяемыми корреляцией

$$(y, u^+) = E(y, \xi^+) (\overline{x^+, \xi^+})$$

для компоненты x^+ в разложении $x=x^-+x^+$ на $x^- \in X^-(S)$, $x^+ \in X(\Gamma)$. Напомним здесь, что при переходе от общей граничной задачи (1.1), (1.2) в схеме с оператором L в пространстве $\mathcal{F} = \mathcal{L}_2$ к эквивалентной обобщенной задаче Дирихле для уравнения (1.6) с $\mathcal{P} = L*L$ дополиительно к (1.2) появляются новые граничные условия

$$(x, \xi) = (g, \eta), \quad x \in X^{-}(\Gamma),$$

где пробные $x \in X(\Gamma)$ имеют вид $x = L^*g$ с $g \in \mathcal{L}_2(S)$, $L^*g = 0$ в S ($(L\varphi, g) = 0$ при всех $\varphi \in C_0^\infty(S)$); в соответствии с этим упомянутое выше условие некоррелированности источника и граничных условий для модели (1.6)' будет выполнено, если, например, в ис-

ходной модели (1.1) мы имеем дело со случайным η типа «белого шума» на пространстве $\mathcal{F}(S)=\mathcal{L}_2(S)$. который иекоррелирован с граничными условиями в (1.2)— для такого источника величины $(L\phi,\eta)$. $q\in \mathcal{C}_0^\infty(T)$, некоррелированы с граничными значениями $(x,\xi^+)=(g,\eta)$, $x=L^*g\in X^-(\Gamma)$.

3° Характеристический функционал. Рассматривая общую стохастическую модель (1.1), (1.2), можно представить себе, что случайный источник η в (1.1) воздействует как своего рода хаотическое возмущение, причем это воздействие происходит независимо от граничных условий в (1.2). Представим случайное поле $\xi \in W(S)$, описываемое такой моделью, в виде суммы

$$\xi = \xi^{-} + \xi^{+}$$

независимых компонент ξ^- , $\xi^+ \in \mathbf{W}(S)$, из которых ξ^- является решением рассматриваемого уравнения (1.1) с нулевыми граничными условиями (1.2), а ξ^+ — решением однородного уравнения (1.1) с рассматриваемыми граничными условиями (1.2).

Обратимся к $\xi = \xi^-$, в качестве модели для хаотически воздействующего источника взяв обобщенное случайное поле $\eta = (\phi, \eta)$ с независимыми значениями — с пезависимыми величинами (ϕ, η) для пробных $\phi \in C_0^\infty(S)$ имеющих непересекающиеся носители supp ϕ , считая среднее $E(\phi, \eta) \equiv 0$.

Можно представить, например, что в бескопечно малой окрестности каждой точки $t \in S$ мы имеем случайный источник с гауссовской (нормальной) компонентой v(dt),

$$Ev(dt) = 0$$
, $E|v(dt)|^2 = F_v(dt)$,

— представленной в целом гауссовской (пормальной) мерой v=v(dt) в области $S\subseteq T\subseteq R^d$, и независимыми при различных $r\subseteq R^1$ компонентами $r\pi(dt\ dr)$ и у а с с о н о вс с к о г о типа.

$$E\pi(dt dr) = 0$$
, $E|\pi(dt dr)|^2 = F_{\pi}(dt dr)$,

которые в целом описываются центрированино й пуассоновской мерой $\pi=\pi(dt\,dr)$ в трубчатой области $S\times R\subseteq R^{t+1}$ с $R=R^1\backslash\{0\}$; понятно, что интегральное воздействие этих компонент, независимо действующих при различных $t\in S$, с помощью пробных $\varphi \in$

$$(\varphi, \eta) = \int_{S} \varphi(t) \, v(dt) + \int_{S} \int_{R} \varphi(t) \, r\pi(dt \, dr), \qquad (1.8)$$

тде для случайных величин (ф. η) мы имеем

$$E | (\varphi, \eta) |^2 = \int |\varphi|^2 F_{\nu}(dt) + \int \int |\varphi|^2 r^2 F_{\pi}(dt dr).$$

Используя в (1.8) действительные $\eta = (\varphi, \eta)$, укажем характеристический функционал $E e^{i(\varphi,\eta)}$, $\varphi \in C_0^\infty(S)$, точнее, его логарифм

 $\log Ee^{i(\varphi,\eta)} =$

$$= -\frac{1}{2} \int |\varphi|^2 F_{\nu}(dt) + \int \int \left[e^{i\varphi(t)r} - 1 - i\varphi(t)r \right] F_{\pi}(dt dr). \tag{4.9}$$

Ионятно, что при источнике η вида (1.8) мы имеем случайное поле $\xi=\xi^-\in \mathbf{W}(S)$ с

$$(x,\xi) = \int_{S} g(t) v(dt) + \int_{S} \int_{R} g(t) r \pi(dt dr)$$

при всех пробных $x=L^*g, g\in \mathcal{F}=\left[C_0^\infty(S)\right]$. — напомним, что $\eta=(\phi,\eta)$ в правой части (1.1) считается непрерывной по $\phi\in C_0^\infty(S)$ в соответствующем \mathcal{F} (см. § 1 гл. II), так что представление (1.8) распространяется с $\phi\in C_0^\infty(S)$ на произвольные $g\in \mathcal{F}(S)=\left[C_0^\infty(S)\right]$. Рассматривая случай пробных $x\in C_0^\infty(S)$ и условно считая для наглядности, что из дифференциального уравнения $L^*g=x$ функция $g\in \mathcal{F}(S)$ определяется с помощью интегрального оператора Gx=g с ядром G(s,t),

$$g(t) = \int_{S} x(s) G(s, t) ds, \quad t \in S,$$

получим

$$(x,\xi) = \int_{S} \left[\int_{S} G(s,t) \, v(dt) \right] x(s) \, ds +$$

$$+ \int_{S} \left[\int_{S} \int_{B} G(s,t) \, r\pi \, (dt \, dr) \right] x(s) \, ds; \qquad (1.8)^{r}$$

соответственно для действительного случайного поля

 $\xi=\xi^-$ характеристический функционал будет описываться формулой

$$\log E e^{i(x,\xi)} = -\frac{1}{2} \iint_{S} \left[\int_{S} G(s,t) x(s) ds \right]^{2} F_{v}(dt) +$$

$$+ \iint_{S} \int_{R} \left[e^{ir \int_{S} G(s,t) x(s) ds} - 1 - \right]$$

$$- ir \int_{S} G(s,t) x(s) dr \right] F_{\pi}(dt dr) . \quad \Box \quad (1.9)'$$

Для общего дифференциального оператора $L=\sum a_h\partial^n$ стохастическая модель (1.1) была нами предложена в схеме, когда L рассматривается в пространстве $\mathcal{F}=\mathcal{L}_2$ и \mathbb{F} соответствии с этим правая часть в (1.1) представляется обобщенной случайной функцией $\eta=(\varphi,\ \eta)$, не прерывной по $\varphi \in C_0^\infty(S)$ от носительно нормы $\|\varphi\|_{\mathcal{F}}=\|\varphi\|_{\mathcal{L}_2}$. Это накладывает на нараметры $F_v,\ F_\pi$ в представлении (1.8) дополнительные условия, которые можно выразить в форме

$$F_{\nu}(dt) = f_{\nu}(t) dt,$$

$$F_{\pi}(dt dr) = f_{\pi}(t, r) dt F_{\pi}(dr)$$
(1.10)

с ограниченными

$$f_{\mathbf{v}}(t) \leqslant C$$
, $\int_{B} r^{2} f_{\mathbf{\pi}}(t, r) F_{\mathbf{\pi}}(dr) \leqslant C$.

Обратившись к стохастической модели (1.1), в которой случайный источник представлен обобщенной функцией $\eta = (\varphi, \eta)$ с независимыми значениями, непрерывной по $\varphi \in C_0^\infty(S)$ относительно $\|\varphi\|_{\mathcal{F}} = \|\varphi\|_{\mathcal{L}_2}$, укажем его общий вид.

Теорема. Общий вид $\eta = (\varphi, \eta)$ описывается стохастическим представлением (1.8), которое в действительном случае определяется формулой Леви — Хинчина (1.9) с параметрами типа (1.10).

Доказательство основано на том, что $\eta = (\varphi, \eta)$ по непрерывности продолжается на все $\varphi \in \mathscr{F}(S) = \mathscr{L}_2(S)$, при $\varphi = 1_B$ задавая на ограниченных (борелевских) множествах $B \subseteq S$ стохастическую меру $\mu(B) = (1_B, \varphi)$ с независимыми для непересекающихся B значе-

нилми $\mu(B)$,

$$E\mu(B) = 0, \quad E|\mu(B)|^2 < \infty.$$

Из условия пепрерывности $E|\mu(B)|^2$ относительно $\phi=\mathbf{1}_B$ в $\mathcal{F}(S)=\mathcal{L}_2(S)$ вытекает, что $\mu(B)$ является безгранично делимой случайной величиной, и, рассматривая действительные величины, согласно общей формуле Леви — Хинчина, мы имеем

 $\log Ee^{i\lambda\mu(B)} = -\frac{1}{2}\lambda^2 F_{\nu}(B) + \int_{B} \left(e^{i\lambda r} - 1 - i\lambda r\right) F_{\pi}(B, dr).$

В силу равенства

$$\mu(B_1 \cup B_2) = \mu(B_1) + \mu(B_2)$$

с везависимыми для иепересекающихся $B_1,\ B_2\subseteq S$ слагаемыми в указанном представлении Леви — Хинчина мы имеем $F_{\nu}(B),\ F_{\pi}(B)$ аддятивными функциями от $B\subseteq S$. абе лютно непрерывными относительно о-конечноймеры $m(B)=E\|\mu(B)\|^2,\ c$ которой они связаны равенств м

$$m(B) = F_{\nu}(B) + \int_{R} r^{2} F_{\pi}(B, dr);$$

точнее, мы имеем F_v , F_π как о-конечные меры $F_v = F_v(dt)$ и $F_\pi = F_\pi(dt|dr)$ соответственно в области $S \subseteq T \subseteq R^d$ и в произведении $S \times R \subseteq R^{d+1}$ с $R = R^1 \setminus \{0\}$. Отсюда для линейных комбинаций $\phi = \sum \lambda_k \mathbf{1}_{B_k}$ индикаторов непересектющихся мпожеств $B_k \subseteq S$ и отвечающих им случайных величии

$$(q, \eta) = \sum \lambda_h \mu(B_h)$$

получаем

$$\log E e^{i(\varphi, \eta)} = -\frac{1}{2} \sum_{h} \lambda_{h}^{2} F_{v}(B_{h}) +$$

$$+ \sum_{h} \int_{R} \left(e^{i\lambda_{h}r} - 1 - i\lambda_{h}r \right) F_{\pi}(B_{h}, dr) =$$

$$= -\frac{1}{2} \int |\varphi|^{2} F_{v}(dt) + \int \int \left[e^{i\varphi(t)r} - 1 - i\varphi(t)r \right] F_{\pi}(dt dr).$$

Здесь в силу непрерывности случайных величин (φ, η) но $\varphi \in \mathcal{L}_2(S)$ предельным переходам к $\varphi \in C_0^\infty(S)$ и получается формула (1.9). Она указывает, что расмаределение вероятностей случайных величин (φ, η) . $\varphi \in$

 $\in C_0^{\infty}(S)$, такое же, как и в стохастическом представлении (1.8) с гауссовской мерой v(dt) и центрированной пуассоновской мерой $\pi(dt \ dr)^*$). \square

Используя шкалу соболевских пространств $W=\mathring{W}_{2}^{D}=$ $=[C_0^\infty], -\infty , естественно поставить вопрос об$ общей структуре обобщенных случайных функций $\eta = (q, \eta)$ с независимыми значениями, пепрерывных по $q \in C_0^\infty$ относительно нормы $\|\varphi\|_W = \|\varphi\|_p$ в W_{\bullet} Простой ответ здесь имеется, по-видимому, лишь для $W = \check{W}_2^p$ при $p \leqslant 0$, а именно, для отвечающего p = 0 пространства $W = \mathscr{L}_2$ мы имеем общее представление (1.8), а для $W \leftarrow \mathring{W}_2^p$ при p < 0 непрерывных по $\mathfrak{q} \in W$ случайных функций $\eta = (\phi, -\eta)$ с независимыми значениями просто не может быть (понятно, не считая $\eta = 0$) — поясним; при $p \le 0$ мы имеем вложение $\mathcal{L}_2 \subseteq W$ и вытекающее из него общее представление (1.8), (1.9), которое в случае существования нетривиальной функции $\eta = (\phi, \eta)$ дает обязательное вложение $W \subseteq$ $\subseteq \mathscr{F} = \begin{bmatrix} C_0^{\infty} \end{bmatrix}$ с \mathscr{F} тина \mathscr{L}_2 , где $\|\varphi\|_{\mathscr{F}}^2 \equiv E \|(\varphi, \eta)\|^2$, согласно (1.10), имеет вид

$$\|\varphi\|_{\mathscr{F}}^2 = \int |\varphi|^2 f(t) dt.$$

а для такого \mathcal{F} и $W=\mathring{W}_2^p$ с показателем p<0 вложения $W\subseteq\mathcal{F}$, означающего, что норма $\|\phi\|_W$ сильнее $\|\phi\|_{\mathcal{F}}$, быть не может. Для пространств $W=\mathring{W}_2^p$ с показателем p>0 широкий класс случайных $\eta=(\phi,\eta)$ с независимыми значениями, непрерывных относительно $\|\phi\|_W=\|\phi\|_p$, получается из представления (1.8), (1.9) заменой $\phi\in\mathcal{C}_0^\infty(S)$ на дифференциальное выражение $\sum c_k \partial^k \phi$ с производными порядка $|k|\leqslant p/2$; в области $S\subseteq R^d$ к этому можно при p>d/2 добавить, например, еще обобщенные случайные функции вида

$$\eta = \sum_{k} \eta_{k} \delta \left(t - t_{k} \right)$$

с независимыми случайными коэффициентами да и т. п.

^{*)} Указанные v(dt) и $\pi(dt \ dr)$ определяются по величинам $(\phi,\eta), \ \phi \in C_0^\infty(S),$ на том же вероятностном пространстве Ω аналогично тому, как это получается в известном представлении Леви — Хинчипа — Ито для случайных процессов с независимыми приращениями.

§ 2. Прогнозирование и марковское свойство

1° Задача о наилучием прогнозе. Обратимся к случайному полю ξ, которое в области S₀ ⊆ T описывается нашей общей моделью с обобщенным дифференциальным уравнением

$$L\xi = \eta \tag{2.1}$$

и граничными условиями

$$(x, \xi) = (x, \xi^+), \quad x \in X^+(\Gamma_0),$$
 (2.2)

на границе $\Gamma_0 = \partial S_0$. Можно представить, что по тем или иным причинам непосредственное наблюдение ξ недоступно в той или иной части области S_0 , и требуется дать прогноз для ξ по каким-то имеющимся данным \mathfrak{B} . Определяя ξ с помощью пробных функций как

$$\xi = (x, \xi), \quad x \in X(S_0),$$

в качестве прогноза для величин $(x,\ \xi)$ можно использовать условное математическое ожидание

$$(x, \widehat{\xi}) = E[(x, \xi)/\mathfrak{B}]$$
 (2.3)

относительно данных \mathfrak{B} , которое для рассматриваемых величин в гильбертовом пространстве $\mathbf{H}=\mathscr{L}_2(\Omega)$ на вероятностном Ω задается оператором $E(\cdot/\mathfrak{B})$ ортогонального проектирования на подпространство $\mathbf{H}(\mathfrak{B}) \subseteq \mathscr{L}_2(\Omega)$, образованное всеми величинами, измеримыми относительно σ -алгебры событий в Ω , порождаемой данными \mathfrak{B} (тем же \mathfrak{B} будем в дальнейшем обозначать и упомянутую σ -алгебру). Указанный в (2.3) способ дает паилучиий прогноз — в нем среднеквадратическая ошибка

$$E|(x, \widehat{\xi}) - (x, \xi)|^2 = \min$$

ивляется минимальной в сравнении с любым другим способом прогнозирования, в качестве прогноза для величин (x, ξ) , дающим по $\mathfrak B$ те или иные величины из $\mathbf H(\mathfrak B)$.

Очевидно, что для $\xi \in \mathbf{W}(S_0)$ тому же функциональному классу принадлежит и функция $\widehat{\xi} = (x, \widehat{\xi})$ — напомним, что включение $u = \widehat{\xi} \in \mathbf{W}(S_0)$ определяется условием непрерывности относительно пробных $x \in X(S_0)$. Уравиение (2.1) означает, что

$$(L^*\varphi, \xi) = (\varphi, \eta)$$

ири всех пробных $x=L^*\varphi$ с $\varphi \in C_0^\infty(S_0)$, откуда следует, что

$$(L^*\varphi, \widehat{\xi}) = (\varphi, \widehat{\eta})$$

связано аналогичным уравнением

$$L\widehat{\xi} = \widehat{\eta} \tag{2.1}$$

є функцией $\widehat{\eta}=(\phi,\ \widehat{\eta}),$ определенной как

$$(\varphi, \widehat{\eta}) = E[(\varphi, \eta)/\mathfrak{B}], \quad \varphi \in C_0^{\infty}(S_0).$$

Ясно, что имеющиеся для **ξ граничные** условия (2.2) дают соответствующие граничные условия

$$(x, \widehat{\xi}) = (x, \widehat{\xi}^+), \quad x \in X^+(\Gamma_0),$$
 (2.2)

на границе $\Gamma_0 = \partial S_0$ с

$$(x, \widehat{\xi}^+) = E[(x, \widehat{\xi})/\mathfrak{B}],$$

и, таким образом, наилучший прогноз $\widehat{\xi}$ может быть по-лучен как решение граничной задачи (2.1)', (2.2)'.

Понятно, что это относится к любому прогнозу $\hat{\xi}$, который дается с помощью того или ппого линейн, го ограниченного оператора $\widehat{E}(\cdot/\mathfrak{B})$ в гильбертовом $\mathbf{H} = \mathscr{L}_2(\Omega)$, определяя

$$\widehat{\xi} = (x, \ \widehat{\xi}) = \widehat{E}[(x, \ \xi)/\mathfrak{B}] \qquad . \tag{2.4}$$

при пробных $x \in X(S_0)$. В частности, для данных \mathfrak{D} , представленных теми или иными величинами из пространства $\mathbf{H} = \mathscr{L}_2(\Omega)$, это относится и к паилучшему линейному прогнозу $\widehat{\xi}$, который дается оператором $\widehat{E}(\cdot / \mathfrak{D})$ ортогонального проектирования на замкнутую линейную оболочку составляющих \mathfrak{D} величин из \mathbf{H} — отметим здесь сразу же тот хорошо известный факт, что в случае, когда прогнозпруемые величины с данными в \mathfrak{D} имеют совместные гауссовские распределеный вереятностей, определяемый формулой (2.3) наилучший прогноз является линейным. \square

Рассмотрим нашу модель (2.1), (2.2) со случайным источником η в (2.1), действие которого внутри области S_0 не зависит от имеющихся граничных условий (2.2) на границе $\Gamma_0 = \partial S_0$; при этом будем считать, что обобщенное случайное поле $\eta = (\varphi, \eta)$, $\varphi \in C_0^\infty(S_0)$. имеет нулевое среднее $E(\varphi, \eta) \equiv 0$.

Говоря о задаче прогнозирования, можно представить, например, что данные 9 содержат лишь граничные значения $(x, \xi), x \in X^+(\Gamma_0)$, определяемые граничными условиями (2.2). Тогда очевидно, что граничная задача (2.1)', (2.2)' для наилучшего прогноза $u = \xi \in \mathbf{W}(S_0)$ имеет вид

$$Lu = 0$$

 $(x, u) = (x, \xi), \quad x \in X^+(\Gamma_0),$ на границе $\Gamma_0 = \partial S_0$.

в области S_0 ,

Выделив область $S \subseteq S_0$, где «наблюдения» недоступны, можно представить также, что имеющиеся данные 9 о случайном поле ξ в н е области S содержат, в частности, все граничные значения

$$\mathfrak{A}(\Gamma) = \{ (x, \, \xi), \, x \in X(\Gamma) \} \tag{2.5}$$

— напомиим, что граничное $X(\Gamma)$ образовано всеми пробными $x \in X(S_0)$ с носителями $\operatorname{supp} x \subseteq \Gamma$ на границе $\Gamma = \partial S$; наиболее полные данные \mathfrak{B} о случайном поле **ξ** в н е области S получаются с помощью величин

$$\mathfrak{A}(S^c) = \{ (x, \, \xi), \, x \in X(S^c) \}$$
 (2.6)

при всех пробных $x \in X(S_0)$ с носителями $\operatorname{supp} x \subseteq S^c$ в дополнение к S.

Как мы знаем, при данных граничных значениях $\mathfrak{A}(\Gamma)$ случайное поле ξ в области \hat{S} однозначно опреде-

дяется уравнением

$$\mathscr{P}\xi = \eta, \tag{2.7}$$

где

$$\mathcal{P} = L$$

для модели (2.1), (2.2) с $L \ge 0$ в соответствующем пространстве $\mathscr{F} = W = W(T)$ и

$$\mathcal{P} = L^*L$$

для модели с общим оператором L в пространстве $\mathcal{F} = \mathcal{L}_2(T)$ — уточним, что для нее в (2.7) появляется не только новый в сравнении с (2.1) оператор \mathscr{P} , но и новый случайный источник η , получающийся из исходного $\eta = (\phi, \eta)$ в (2.1) заменой пробных ϕ $L\varphi, \varphi \in C_0^\infty(S)$; по поводу используемых здесь и в дальнейшем конструкций в схеме модели (2.1), (2.2) см. гл. II.

Понятно, что определяемый общей формулой (2.4) прогноз для ξ в S может быть получен как (единственное) решение уравнения

$$\mathscr{P}\widehat{\xi} = \widehat{\eta} \tag{2.7}$$

в области S с соответствующей правой частью $\widehat{\eta}.$

$$(\varphi, \widehat{\eta}) = \widehat{E}[(\varphi, \eta) \mathfrak{B}], \quad \varphi \in C_0^{\infty}(S),$$

при обобщенных условиях Дирихле

$$(x, \hat{\xi}) = (x, \hat{\xi}), \quad x \in X(\Gamma),$$

на границе $\Gamma = \partial S$ с данными в $\mathfrak B$ граничными значениями (2.5).

В нашей схеме (2.1), (2.2) в области $S_0 \equiv T$ с оператором L в пространстве $\mathcal{F} = \mathcal{L}_2(T)$ своего рода стандартной моделью случайного источника хаотических возмущений в области S_0 может служить гауссовский «белый шум» на $\mathcal{F}(S_0) = \mathcal{L}_2(S_0)$ — поясним, что такая модель случайного поля $\eta = (\varphi, \eta), \ \varphi \in \mathcal{F}(S_0)$, отражает определенную однородность в распределении по S_0 интенсивности рассматриваемых возмущений, а также соответствующую малость их интегрального воздействия в каждой достаточно малой области в S_0 . Обратимся к общей стохастической модели (2.1), (2.2) со случайным источником η , представленным гауссовским «белым шумом» на соответствующем $\mathcal{F}(S_0) = [C_0^\infty(S_0)]$. В такого рода модели задача о прогнозе получает сле-

В такого рода модели задача о прогнозе получает следующее решение.

Теорема. Наилучший прогноз для ξ в области $S \subseteq S_0$ по данным $\mathfrak{B} = \mathfrak{A}(S^c)$ вне S дается (единственным) решением $u = \widehat{\xi} \in \mathbf{W}(S)$ обобщенной задачи Дирихле:

$$\mathcal{P}u = 0 \tag{2.8}$$

в области S,

$$(x, u) = (x, \xi), \quad x \in X(\Gamma),$$
 (2.9)

на границе $\Gamma = \partial S$.

Попятно, что то же решение получается и при любых других данных $\mathfrak{B} \subseteq \mathfrak{A}(S^c)$, содержащих граничные значения (2.5), с помощью которых ставятся граничные условия (2.9) — поясиим, что для соответствующих $\widehat{\xi} = (x, \widehat{\xi})$ и решения $u \in \mathbf{W}(S)$ граничной задачи (2.8), (2.9) при всех пробных $x \in X(S)$ использование повтор-

ных условных математических ожиданий дает равенства

$$(x. \widehat{\xi}) = E[(x, \xi)/\mathfrak{A}] = E\{E[(x, \xi)/\mathfrak{A}(S^c)]\mathfrak{B}\} =$$

$$= E\{E[(x, \xi)/\mathfrak{A}(\Gamma)]/\mathfrak{B}\} = E[(x, \xi)/\mathfrak{A}(\Gamma)] = (x, u).$$

Предлагаемое эдесь решение задачи о наилучшем прогнозе в случае гауссовского источника п в (2.1) является следствием решения аналогичной задачи о наилучшем линейном прогнозе, к которой

мы и переходим. П Обратимся к нашей модели (2.1), (2.2) с произ-

вольным «белым шумом» η на соответствующем $\mathcal{F}(S_0) = \left[C_0^{\infty}(S_0) \right]$ в (2.1), некоррелированным с граничными условиями (2.2). Напомиим, что в (2.7) мы имеем то же $\mathscr{P} = L$ и η , что и в исходном уравнении (2.1) для нашей модели в области $S_0 \subseteq T$ с оператором $L = \mathscr{P} \geqslant 0$ в соответствующем $\mathcal{F} = W = \dot{W}(T)$, и в (2.7) появляются оператор $\mathscr{P} = L^*L$ и новый источник η для модели c общим оператором L в пространстве $\mathscr{F} = \mathscr{L}_2(T)$ — при этом новый источник п, который получается заменой ф ∈ $\in C_0^\infty(S_0)$ на Lф в исходном «белом шуме» $\eta =$ $= (\varphi, \eta)$ из (2.1), представляется «белым шумом» на новом $\mathscr{F}(S_0) = \left[C_0^{\infty}(S_0)\right] = \mathring{W}(S_0),$ поскольку по самому определению скалярного произведения в W =

$$=\dot{W}(T)$$
 мы пмеем
$$\langle u,v\rangle_{W}=\langle Lu,Lv\rangle_{\mathscr{Q}_{2}}$$

(по этому поводу см., например, § 1 гл. II).

Отметим, что имея дело с источником п, представленным произвольным полем с некоррелированными значениями на $\mathcal{F}(S_0) = \mathcal{L}_2(S_0)$ с невырожденной корреляционной формой

$$E(f, \eta)(\overline{g, \eta}) = \int_{S_0} f(t) \overline{g(t)} \sigma^2(t) dt, \quad \sigma^2(t) \geqslant c > 0,$$

заменой в исходном $\eta = (\varphi, \eta)$ переменного $\varphi \in \mathscr{L}_2(S_0)$ на $\frac{1}{\sigma}$ ϕ можно получить новый источник η , используя его в эквивалентном (2.1) уравнении того же тина

с новым

$$L = \sum_{k} \frac{1}{\sigma} a_k \partial^k,$$

получающимся из исходного оператора в (2.1) умножением на функцию $1/\sigma$, что дает новый оператор $\mathcal{P}==L^*L$ с сопряженным

$$L^* = \sum_{k} (-1)^{|k|} \partial^k \left(\frac{1}{\sigma} a_k\right). \quad \Box$$

Перейдем непосредственно к доказательству заявленной теоремы. В данных \mathfrak{B} в не области $S \subseteq S_0$ содержатся и эсе

гранцчные значения

$$(x, \xi), \quad x \subseteq X(\Gamma_0),$$

на границе $\Gamma_0 = \partial S_0$ самой области S_0 , где рассматривается модель (2.1), (2.2). Имея эти данные, можно выделить в ξ составляющую ξ^+ , получающуюся как решение $u = \xi^+ \in \mathbf{W}(S_0)$ обобщенной задачи Дирихле:

$$\mathcal{P}u = 0 \tag{2.40}$$

в области S_0 ,

$$(x, u) = (x, \xi), \quad x \in X(\Gamma_0).$$
 (2.11)

Выделив таким образом все величины

$$\mathfrak{A}^+ = \{(x, \xi^+), x \in X(S_0)\}, \cdot$$

обратимся к разности

$$\xi^{-} = \xi - \xi^{+}$$

которая как функция $\xi^- = \mathbf{W}(S_0)$ есть решение уравнения

$$\mathcal{P}\xi^- = \eta \tag{2.12}$$

в области S_0 при нулевых граничных условиях

$$(x, \xi^{-}) = 0, \quad x \in X(\Gamma_{0}).$$
 (2.13)

При рассмотрении ξ^- нам удобно будет освободиться от граничных условий (2.13), обратившись к уравнению (2.12) во всей области $T \cong S_0$ с надлежаще продолженной правой частью $\eta = (\varphi, \eta), \ \varphi \in C_0^\infty(T)$. Именно, вослользовавшись ортогональным разложением

$$X = \mathscr{P}\mathring{W}(S_0) \oplus X(S_0^c)$$

с $\mathring{W}(S) = \begin{bmatrix} C_0^\infty(S_0) \end{bmatrix}$ в $W = \mathring{W}(T)$ и подпространством $X\left(S_0^c\right)$ всех пробных $x \in X$ с носителями supp $x \subseteq S_0^c$ в дополнение к области S_0 , для соответствующего ортогонального разложения

$$W = \mathring{W}(S_0) \oplus \mathscr{P}^{-1}X(S_0^c)$$

с унитарным \mathscr{P}^{-1} : $X \to W$ при $u = u_0 + v$ с $u_0 \in \overset{\circ}{W}(S_0)$, $v \in \mathscr{P}^{-1}X\left(S_0^c\right)$ положим

$$(u, \eta) = (u_0, \eta), \quad u \in W.$$
 (2.14)
С так определенной правой частью η уравнение (2.12)

в области T, однозначно определяющее $\xi \in \mathbf{W} = \mathbf{W}(T)$ с нулевыми значениями $(x, \xi) = (v, \eta) = 0$ при всех пробных $x \in X(S_0^c) \supseteq X(\Gamma_0)$, $x = \mathcal{P}v$, в области $S_0 \subseteq T$ будет давать решение ξ^- граничной задачи (2.12), (2.13).

Для
$$\xi^- \subseteq W$$
 при всех пробных $x = \mathcal{P}u$, $u \subseteq W$, мы имеем $(x, \xi^-) = (u, \eta)$, где определенное в (2.14) случайное поле $\eta = (u, \eta)$,

 $u \in W$, обладает тем свойством, что при любых ортогопальных $\varphi \in \mathring{W}(S_0)$, $u \in W$ величины (φ, η) , (u, η) являются некоррелированными — поясним, что взяв разложение $u^- = u_0 + v$, для ортогональных φ , $u_0 = u_0 + v \in \mathring{W}(S_0)$ получим некоррелированные (φ, η) , $(u_0, \eta) = (u, \eta)$. В частности, для $S \subseteq S_0$ мы имеем некоррелированные (φ, η) , (ψ, ψ, ψ) , (ψ, ψ, η) , (ψ, ψ, ψ) , (ψ, ψ, ψ) , $(\psi, \psi$

$$X \equiv \mathscr{P}\mathring{W}(S) \oplus X(S^c)$$
.

телями supp $x \subseteq S^c$ в дополнение к области S — напом-

ним, что

Итак, при $\phi \in C_0^{\infty}(S)$ мы имеем (ϕ, η) некоррелированными с величинами из совокупности

$$\mathfrak{A}^- = \{(x, \, \xi^-), \, x \in X(S^c)\},\$$

которая вместе с выделенной в (2.10), (2.11) совожупностью \mathfrak{A}^+ образует все данные $\mathfrak{B}=\mathfrak{A}(S^c)$ в не области S, на что укажем записью

$$\mathfrak{B} = \mathfrak{A}^- \cup \mathfrak{A}^+$$
,

Рассматривая нашу модель (2.1), (2.2), мы до сих пор не оговаривали, какого типа граничные условия (2.2) в ней ставятся. Будем считать теперь, что для детермин прованных функций $u \in W(S_0)$ однородное уравнение (2.1)

Lu = 0

в области S_0 имеет единственное решение при произвольных граничных условиях типа (2.2) — при задании их, скажем, с помощью надлежащего граничного оператора L_0 в форме

$$L_0(u-u^+)=0$$

с произвольным $u^+ \in W(S_0)$ (см. по этому поводу § 3 гл. II). В нашей модели граничные условия (2.2) такого типа $X^+(\Gamma_0)$ при произвольном их задании выделяют (единственное) решение $\xi \in W(S_0)$ уравнения (2.1).

При рассмотрении уравнения (2.1) с оператором

 $L=\mathscr{P}\geqslant 0$ в пространстве $\mathscr{F}=W=W(T)$ указанного типа условия (2.2) есть обобщенные условия Дирихле типа $X^+(\Gamma_0)=X(\Gamma_0)$, с помощью которых ранее была выделена компонента ξ^+ — см. (2.10), (2.11). При том условии, что источник η в (2.1) является некоррелированным с граничными условиями (2.2), мы имеем величины φ , η), $\varphi \in C_0^\infty(S)$, некоррелированными со всей совокуппостью $\mathfrak{B}=\mathfrak{A}^-\cup\mathfrak{A}^+$, и в итоге при нулевом среднем $E(\varphi, \eta)\equiv 0$ для правой части $\widehat{\eta}$ в общем уравнении (2.7) получаем

 $(\varphi, \widehat{\eta}) = \widehat{E}[(\varphi, \eta)/\mathfrak{B}] = 0.$

Аналогичный результат получается для модели (2.1), (2.2) с общим оператором L в пространстве $\mathcal{F} = \mathcal{L}_2(T)$. Именно, при рассматриваемом типе граничных условий (2.2) граничное $X(\Gamma_0)$ представимо прямой суммой

$$X(\Gamma_0) = X^-(\Gamma_0) + X^+(\Gamma_0),$$

и для пробных $x=x^-+x^+$ с $x^- \in X^-(\Gamma_0), x^+ \in X^+(\Gamma_0)$ мы имеем

$$(x, \xi) = (x^-, \xi) + (x^+, \xi),$$

где $x^- = L^*g^-$ с $g^- \in \mathcal{F}(S_0) = \mathcal{L}_2(S_0)$, ортогональными всем $L\phi$, $\phi \in C_0^\infty(S_0)$ — напомним, что

$$(L\varphi, g^{-}) = 0$$

при всех $\varphi \in C_0^\infty(S_0)$. В случае исходного источника η в (2.1), представленного «белым шумом» на пространстве $\mathcal{F}(S_0) = \mathcal{L}_2(S_0)$ и некоррелированного с граничными условиями (2.2), мы имеем величины ($L\varphi$, η) некоррелированными значениями

$$(x, \xi) = (g^-, \eta) + (x^+, \xi^+), \quad x \in X(\Gamma_0).$$

является некоррелированным со всеми граничными значениями $(x, \xi), x \in X(\Gamma_0)$, и дает в области S величины $(\varphi, \eta), \varphi \in C_0^\infty(S)$, которые некоррелированы с $\mathfrak{B} = \mathfrak{A}^- \vee \mathfrak{A}^+$, и для них в правой части (2.7)'

Это говорит о том, что новый источник η в (2.7)

$$(\varphi, \widehat{\eta}) = E[(\varphi, \eta)/\mathfrak{B}] = 0.$$

В итоге получается следующий результат. Теорема. Наилучший линейный прогноз для ξ в

области \hat{S} по данным вне S дается (единственным) решением $u = \hat{\xi} \in \mathbf{W}(S)$ обобщенной задачи Дирихле (2.8), (2.9). \square

Этот результат показывает, в частности, что наилучший линейный прогноз по всем данным $\mathfrak{B}=\mathfrak{A}(S^{\circ})$ вне области S оказывается таким же, как и наилучший линейный прогноз по данным только лишь граничным значениям $\mathfrak{A}(\Gamma)$, а именно,

при всех пробных $x \in X(S)$ в замыкании [S] области S.

$$\widehat{E}[(x, \xi)/\mathfrak{A}(S^{c})] = \widehat{E}[(x, \xi)/\mathfrak{A}(\Gamma)]$$
 (2.15)

Выраженное в (2.15) свойство можно назвать марковским (в широком смысле). Для гауссовского ξ оно означает, что при указанных в (2.5) граничных данных $\mathfrak{A}(\Gamma)$ случайное поле ξ в области S не зависит от событий вне этой области, определяемых указанными в (2.6) данными $\mathfrak{A}(S^c)$. Уточним, что речь идет об условной независимости ξ в S от $\mathfrak{A}(S^c)$ при данных $\mathfrak{A}(\Gamma)$, которая при использовании определяемого по $\mathfrak{A}(\Gamma)$ решения $u = \hat{\xi} \in W(S)$ граничной задачи (2.8), (2.9) объясняется (безусловной) независимостью разности

$$\xi_0 = \xi - u \in W(S)$$

в области S от величин $\mathfrak{A}(S^c)$ и выражается в том. что

условное распределение вероятностей совокупности величин (x, ξ) , $\operatorname{supp} x \in [S]$, относительно $\mathfrak{A}(S^c)$ такое же, как и относительно $\mathfrak{A}(\Gamma) \subseteq \mathfrak{A}(S^c)$ — поясним: за вычетом условных средних $(x, u) = \mathrm{E}\left[(x, \xi)/\mathfrak{A}(\Gamma)\right]$ условное распределение величин (x, ξ) такое же, как у независимых от $\mathfrak{A}(S^c)$ величин (x, ξ_0) , $\operatorname{supp} x \subseteq [S]$.

 2° Наилучший прогноз и марковское свойство. Допустим, перед нами стоит задача о наилучшем прогнозе случайного поля ξ , описываемого общей моделью (2.1), (2.2), которое в интересующей нас области $S \subseteq S_0$ обладает марковским свойством, а именно, условное распределение величин

$$\mathfrak{A}(S) = \{(x, \, \xi), \, \text{supp } x \subseteq [S]\}$$
 (2.16)

относительно данных $\mathfrak{A}(S^c)$ в не области S такое же, как относительно граничных данных $\mathfrak{A}(\Gamma)$ на граниче $\Gamma = \partial S$ — напомним, что введенные ранее $\mathfrak{A}(\Gamma)$, $\mathfrak{A}(S^c)$ определяются аналогично (2.16); см. (2.5), (2.6). Понятно, что при наличии марковского свойства наилучший прогноз $u = \widehat{\xi} \in \mathbf{W}(S)$ по данным \mathfrak{B} ,

$$\mathfrak{A}(\Gamma) \subseteq \mathfrak{B} \subseteq \mathfrak{A}(S^{c}),$$

получается, согласно общему уравнению (2.7) как единственное) решение уравнения

$$\mathcal{P}u = f \qquad (2.17)$$

в области S с правой частью $f = \widehat{\mathfrak{q}}$,

$$(\varphi, \widehat{\eta}) = E[(\varphi, \eta)/\mathfrak{A}(\Gamma)], \quad \varphi \in C_0^{\infty}(S),$$

при граничных условиях

$$(x, u) = (x, \xi), \quad x \in X(\Gamma), \tag{2.18}$$

поставленных с помощью граничных данных $\mathfrak{A}(\Gamma)$. Можно представить, например, что нам как-то удалось получить дополнительные данные, связанные с ξ в «недоступной» области S— скажем, это какие-то данные $\mathfrak{B}(\Gamma^*) \subseteq \mathfrak{A}(\Gamma^*)$ в малой окрестности Γ^* границы $\Gamma = \partial S$, которые в совокупности с прежним \mathfrak{B} составляют $\mathfrak{B} \vee \mathfrak{B}(\Gamma^*)$. Как на основе новых $\mathfrak{B}(\Gamma^*)$ подправить наилучний прогноз?

На первый взгляд может показаться очевидным, что в уравнении (2.17) для наилучшего прогноза нужно лишь

подправить правую часть f, взяв там $f = \eta$ с

$$(\varphi, \widehat{\mathfrak{p}}) = E\left[(\varphi, \mathfrak{p})/\mathfrak{A}(\Gamma) \setminus \mathfrak{B}(\Gamma^{\varepsilon})\right], \quad \varphi \in C^{\circ}$$

оказаться ошибочным, так как $\mathscr{P}\xi = \eta$ в области S может стать при расширенных данных $\mathfrak{A}(\Gamma) \vee \mathfrak{B}(\Gamma^{\epsilon})$ существенно зависимым от $\mathfrak{B} \subseteq \mathfrak{A}(S^c)$. Проиллюстрируем это на простейшем примере броуновского движения $\xi = \xi(t)$, $t \in T$, в модели (2.1), (2.2) с $S_0 = T = R \setminus \{0\}$ и оператором $\mathscr{P}=-d^2/dt^2$ в соответствующем пространстве $\mathscr{F}=$ $=W=\mathring{W}(T)$ типа соболевского $\mathring{W}_{2}^{1}(T)$ — поясним: в качестве источника п в (2.1) используется производная гауссовского «белого шума» на $\mathscr{L}_2(T)$. При наплучшем прогнозе в «будущее» $S = (0, \infty)$ мы имеем независимость ξ в S от «прошлого» $\xi(t)$, $t \in S^c = (-\infty, 0]$ поясним: $\xi(0) = 0$. Налицо марковское свойство, выраженное полной независимостью $\mathfrak{A}(S)$ от $\mathfrak{A}(S^c)$ при тривиальном $\mathfrak{A}(\Gamma)=0$ на точечной границе $\Gamma=\{0\}$. Однако $\mathfrak{A}(S)$ и $\mathfrak{A}(S^c)$ становятся существенно зависимыми

 $\mathfrak{B}(\Gamma^{\varepsilon}) = \{ (\varphi, \eta), \varphi \in C_0^{\infty}(\Gamma^{\varepsilon}) \} \subseteq \mathfrak{A}(\Gamma^{\varepsilon});$

достаточно указать здесь на явную зависимость величин $\eta_1 = [\xi(3\varepsilon) - \xi(\varepsilon)] - [\xi(\varepsilon) - \xi(-\varepsilon)]$

 $\eta_2 = [\xi(-3\varepsilon) - \xi(-\varepsilon)] + [\xi(\varepsilon) - \xi(-\varepsilon)]$ с общей компонентой $\eta_3 = [\xi(\epsilon) - \xi(-\epsilon)]$, каждая из которых не зависит от $\mathfrak{B}(\Gamma^{\epsilon})$, а η_1 и η_2 должны были бы быть условно независимыми относительно $\mathfrak{B}(\Gamma^{\epsilon})$ в случае условной независимости $\mathfrak{A}(S)$ и $\mathfrak{A}(S^{\mathfrak{c}})$ относительно $\mathfrak{A}(\Gamma) ee \mathfrak{B}(\Gamma^{\epsilon}) = \mathfrak{B}(\Gamma^{\epsilon})$ — к этому мы еще вернемся при рассмотрении устойчивости марковского свойства по отношению к допустимым расширениям граничных дан-

*) См. Розанов Ю. А. Марковские случайные поля.— М.: Наука, 1981, где аналогичный пример был приведен в связи с отибочностью некоторых имеющихся ранее представлений о марков-

что отвечает замене исходных граничных данных $\mathfrak{A}(\Gamma)$ на более полные данные $\mathfrak{A}(\Gamma) \vee \mathfrak{B}(\Gamma^{\epsilon})$ в окрестности Γ^{ϵ} границы $\Gamma = \partial S$. К сожалению, такое решение может

при данных $\mathfrak{A}(\Gamma) \vee \mathfrak{B}(\Gamma^{\epsilon}) = \mathfrak{B}(\Gamma^{\epsilon})$ с

И

ных ೩(Г). *)

ских случайных полях.

 $(\varphi, \widehat{\eta}) = E[(\varphi, \eta)/\mathfrak{A}(\Gamma) \vee \mathfrak{B}(\Gamma^{\varepsilon})], \quad \varphi \in C_{n}^{\infty}(S),$

Наш пример указывает на нетривиальность самого марковского свойства, для модели (2.1), 2.2) равносильного тому, что имеющийся в правой части (2.1) случайный источник η в области $S \subseteq S_0$ является условно независимым от поля ξ вне этой области при граничных данных $\mathfrak{A}(\Gamma)$, и в частности, условно независимым от $\eta = L\xi$ в дополнительной к S области $S^+ = S_0 \setminus [S]$, что, вообще говоря, может не быть даже в модели, представляющей источник η как обобщенное случайное поле с независимыми значениями. \square

Ранее мы установили марковское свойство для модели (2.1). (2.2) в области $S_0 = T$ со случайным источником гауссовского «белого шума» в (2.1), действие которого внутри S_0 не зависит от граничных условий (2.2) на границе $\Gamma_0 = \partial S_0$.

Рассмотрим теперь источник η , представленный пронзвольным случайным полем с независимыми значениями, обратившись к модели (2.1), (2.2) в области $S_0 \subseteq T$ с общим оператором L в пространстве $\mathcal{F} = \mathcal{L}_2(T)$ и елешними граничными условиями на $\Gamma_0 = \partial S_0$ типа $X^+(\Gamma_0)$, в которых граничные пробные $x \in X^+(\Gamma_0)$ связаны с соответствующими $g \in \mathcal{L}_2(S_0^c)$ в не области S_0 и могут быть представлены как $x = L^*g$ с g = 0 в S_0 , $L^*g = 0$ в дополнительной области $S_0^+ = T \setminus [S_0]$ — см. по этому поводу § 2 гл. II.

Обратимся к

$$\mathfrak{A}(S)$$
, $\mathfrak{A}(\Gamma)$, $\mathfrak{A}(S^c)$,

порожденным случайным полем ξ на $[S], \ \Gamma, \ S^c - c M_c$ (2.46).

Используя σ -алгебры событий, порождаемые соответствующими случайными величинами, марковское свойство условной независимости $\mathfrak{A}(S)$ от $\mathfrak{A}(S^c)$ относительно $\mathfrak{A}(\Gamma)$ можно коротко описать, сказав, что $\mathfrak{A}(\Gamma)$ расщепляет σ -алгебры $\mathfrak{A}(S)$ и $\mathfrak{A}(S^c)$, или, иначе, что $\mathfrak{A}(\Gamma)$ является расщепляющей σ -алгеброй для $\mathfrak{A}(S)$ и $\mathfrak{A}(S^c)$.

Мы покажем, что не только $\mathfrak{A}(\Gamma)$, но и ее любое расширение $\mathfrak{A}(\Gamma^*)$, порождаемое соответствующими величинами

$$\mathfrak{A}(\Gamma^{\varepsilon}) = \{(x, \xi), \text{ supp } x \subseteq [\Gamma^{\varepsilon}]\}$$

из замыкания окрестности Γ^{ϵ} границы $\Gamma = \partial S$, является расщепляющей **σ**-алгеброй для величи**н** $\mathfrak{A}(S)$ и $\mathfrak{A}(S^{c})$. \square

Напомним сначала некоторые известные свойства расшепленных σ -алгебр *).

Определим \mathfrak{B} как расщепленную \mathfrak{A}_1 и \mathfrak{A}_2 , если при данном \mathfrak{B} \mathfrak{G} -алгебры \mathfrak{A}_1 и \mathfrak{A}_2 являются условно независимыми в том смысле, что для условных вероятностей при любых событиях $A_1 \subseteq \mathfrak{A}_1$ и $A_2 \subseteq \mathfrak{A}_2$ выполняется равенство

$$P(A_1A_2/\mathfrak{B}) = P(A_1/\mathfrak{B})P(A_2/\mathfrak{B}).$$

С использованием индикаторов $\xi_1=1_{A_1},\ \xi_2=1_{A_2}$ событий $A_1,\ A_2$ указанное равенство можно выразить как

$$E(\xi_1 \xi_2/\mathfrak{B}) = E(\xi_1/\mathfrak{B}) E(\xi_2/\mathfrak{B})_{\mathfrak{h}}$$

и это распространяется на любые величины $\xi_1, \ \xi_2 \in H = \mathscr{L}_2(\Omega)$, пзмеримые относительно $\mathfrak{A}_1, \ \mathfrak{A}_2$.

Расщепляя \mathfrak{A}_1 и \mathfrak{A}_2 , о-алгебра \mathfrak{B} расщепляет также рас щепленные о-алгебры $\mathfrak{A}_1=\mathfrak{A}_1\vee\mathfrak{B}$ и $\mathfrak{A}_2=\mathfrak{A}_2\vee\mathfrak{B}$ (порождаемые дополнительно к \mathfrak{A}_1 , \mathfrak{A}_2 еще событиями из \mathfrak{B}), что непосредственно видно для событий $\widetilde{A}_1=A_1B_1$ и $\widetilde{A}_2=A_2B_2$ с $A_1\in\mathfrak{A}_1$, $A_2\in\mathfrak{A}_2$ и B_1 , $B_2\in\mathfrak{B}$, порождающих δ -алгебры $\widetilde{\mathfrak{A}}_1$, $\widetilde{\mathfrak{A}}_2$ — поясним: для индикаторов указанных событий

$$\begin{split} E\left(\mathbf{1}_{A_1B_1}\cdot\mathbf{1}_{A_1B_2}/\mathfrak{B}\right) &= \mathbf{1}_{B_1}\mathbf{1}_{B_2}E\left(\mathbf{1}_{A_1}/\mathfrak{B}\right)E\left(\mathbf{1}_{A_2}/\mathfrak{B}\right) = \\ &= E\left(\mathbf{1}_{A_1B_1}/\mathfrak{A}\right)E\left(\mathbf{1}_{A_2B_2}/\mathfrak{B}\right). \end{split}$$

Определенная выше условная независимость \mathfrak{A}_1 и \mathfrak{A}_2 относительно \mathfrak{B} равносильна тому, что для всех событий $A_1 \in \mathfrak{A}_1$

$$P(A_1/\mathfrak{A}_2 \vee \mathfrak{B}) = P(A_1/\mathfrak{B});$$

поясним это, указав в случае расщепляющей о-алгебры В на равенство

$$E\left[\xi_{1}-E\left(\xi_{1}/\mathfrak{B}\right)\right]\widetilde{\xi}_{2}=E\left\{E\left[\xi_{1}-E\left(\xi_{1}/\mathfrak{B}\right)\right]\widetilde{\xi}_{2}/\mathfrak{B}\right\}=0$$

для измеримых относительно \mathfrak{A}_1 , $\mathfrak{A}_2 \vee \mathfrak{B} = \widetilde{\mathfrak{A}}_2$ величин ξ_1 , $\widetilde{\xi}_2 \in H$, которое означает, что

$$E(\xi_1/\mathfrak{Y}) = E(\xi_1/\mathfrak{A}_2 \vee \mathfrak{Y})$$

^{*)} См., например, Knight F. A remark on Markovian germ fields // Z. Wahr. Geb.— 1970.— Bd 15.— S. 291—296.

есть проекция величины ξ_1 на подпространство $H(\mathfrak{A}_2 \vee \mathfrak{B})$ измеримых относительно $\mathfrak{A}_2 \vee \mathfrak{B}$ величин в $H = \mathscr{L}_2(\Omega)$.

Парадоксальным на первый взгляд кажется тот факт, что расширение $\mathfrak{B} \cong \mathfrak{B}$ может уже не быть расщепляющей σ -алгеброй для \mathfrak{A}_1 , \mathfrak{A}_2 . Вспомним как пример σ -алгебры

$$\mathfrak{A}_1 = \mathfrak{B}(0, \infty), \quad \widetilde{\mathfrak{B}} = \mathfrak{B}(-\varepsilon, \varepsilon), \quad \mathfrak{A}_2 = \mathfrak{B}(-\infty, 0),$$

порождаемые производной гауссовского «белого шума» на интервалах $(0, \infty)$, $(-\varepsilon, \varepsilon)$, $(-\infty, 0)$, где независимые о-алгебры \mathfrak{A}_1 и \mathfrak{A}_2 являются условно зависимыми относительно о-алгебры \mathfrak{B} (которую можно рассматривать как расширение тривиальной о-алгебры \mathfrak{B}) — ранее была указана явная (условная) зависимость соответствующих $\mathfrak{B}_i \vee \mathfrak{B} = \mathfrak{B}(-\varepsilon, \infty)$, $\mathfrak{A}_2 \vee \mathfrak{B} = \mathfrak{B}(-\infty, \varepsilon)$ относительно \mathfrak{B} .

Оказывается, что расширение \mathfrak{B} расщепляющей σ -алгебры \mathfrak{B} будет также расщепляющей σ -алгеброй, если \mathfrak{B} получается как

$$\widetilde{\mathfrak{B}} = \mathfrak{B}_1 \vee \mathfrak{B} \vee \mathfrak{B}_2$$

присоединением компонент $\mathfrak{B}_1 \subseteq \mathfrak{A}_1$, $\mathfrak{B}_2 \subseteq \mathfrak{A}_2$; поясним это, скажем, пир $\widetilde{\mathfrak{B}} = \mathfrak{B} \vee \mathfrak{B}_2$, когда для любой измеримой относительно \mathfrak{A}_1 величины $\xi_1 \subseteq H$ и $\mathfrak{B}_2 \subseteq \mathfrak{A}_2$

$$E(\xi_1/\widetilde{\mathfrak{B}}) = E[E(\xi_1/\mathfrak{B} \vee \mathfrak{A}_2)/\widetilde{\mathfrak{B}}] =$$

$$= E\left[E\left(\xi_1/\mathfrak{B}\right)/\widetilde{\mathfrak{B}}\right] = E\left(\xi_1/\mathfrak{B}\right) = E\left(\xi_1/\mathfrak{A}_2 \vee \widetilde{\mathfrak{B}}\right)$$

с $\mathfrak{A}_2 \vee \widetilde{\mathfrak{B}} = \mathfrak{A}_2 \vee \mathfrak{B}$. Понятно, что во всех указанных ранее соотношениях о-алгебры \mathfrak{A}_1 и \mathfrak{A}_2 можно поменять местами — их условная независимость относительно \mathfrak{B} симмегрично отражается на свойствах \mathfrak{A}_1 , \mathfrak{A}_2 .

Укажем еще операцию сужения расщепляющих $\mathfrak{B}_1 \cong \mathfrak{B}_2 \cong \dots$ расщепляющих $\mathfrak{B}_1 \cong \mathfrak{B}_2 \cong \dots$ расщепляющей будет также предельная σ -алгебра

$$\mathfrak{B}=\mathop{\cap}\limits_{n}\,\mathfrak{B}_{n},$$

что непосредственно следует из самого определения и непрерывности условных вероятностей/математических ожиданий относительно предельного перехода от $\mathfrak{B} = \mathfrak{B}_n$ к $\mathfrak{B} = \cap \mathfrak{B}_n$. \square

Вернемся к нашей модели (2.1), (2.2) со случайным источником $\eta = (\varphi, \eta)$, непрерывным относительно пробных $\varphi \in C_0^\infty(S_0)$ по норме $\|\varphi\|_{\mathscr{F}} = \|\varphi\|_{\mathscr{F}_2}$ и продолженным по непрерывности на все $\varphi \in \mathscr{F}(S_0) = \mathscr{L}_2(S_0)$. Для случайного поля с независимыми значениями порождаемые им величины

$$\mathfrak{B}(S) = \{ (\varphi, \eta), \varphi \in \mathscr{L}_2(S) \}$$

в произвольной области $S \subseteq S_0$ пе зависят от величии $\mathfrak{B}(S^c) = \{(g, \ \eta), \ g \in \mathscr{L}_2(S^c)\}$

вне S, что является следствием независимости от $\mathfrak{B}(S^\circ)$ величин (ϕ, η) при пробных $\phi \in C_0^\infty(S)$, каждая из которых имеет компактный носитель supp $\phi \subset S$, не пересекающийся с замкнутым S° . Сразу же отметим, что независимость $\mathfrak{B}(S)$ и $\mathfrak{B}(S^\circ)$ переходит в условную независимость относительно σ -алтебры $\mathscr{L} = \mathfrak{B}(\Gamma^\circ)$, порождаемой величинами $(g, \eta), g \in \mathscr{L}_2(\Gamma^\circ)$, в любом расширении $\Gamma^\circ \supseteq \Gamma$ границы $\Gamma = \partial S$, что является следствием разложения

$$\mathfrak{B}(\Gamma^{\epsilon}) = \mathfrak{B}(\Gamma^{\epsilon})^{-} \vee \mathfrak{B}(\Gamma^{\epsilon})^{+}$$

на компоненты, порождаемые соответственно величинами (g^-, η) и (g^+, η) с $g^- \in \mathscr{L}_2(\Gamma^e \cap S)$ и $g^+ \in \mathscr{L}_2(\Gamma^e \cap S^c)$ — поясним: каждая функция $g \in \mathscr{L}_2(\Gamma^e)$ представима как $g = g^- + g^+$; более того, при любом $\Gamma^e \supseteq \Gamma$ σ-алгебра $\mathfrak{B}(\Gamma^e)$ является расщепляющей для $\mathfrak{B}(S \cup \Gamma^e)$ и $\mathfrak{B}(S^c \cup \Gamma^e)$. Указанная здесь условная независимость случайного поля η в произвольных (замкнутых) $S_1 = S \cup \Gamma^e$ и $S_2 = S^c \cup \Gamma^e$ при задании его на расширенной границе $\Gamma^e = S_1 \cap S_2$ определяет так называемое устойчивое (глобальное) марковское свойство, означающее устойчивость свойства условной независимости $\mathfrak{B}(S)$ и $\mathfrak{B}(S^c)$ при указанных выше расширеннях граничных условий. Отметим, что согласно разложению

$$\mathcal{L}_2(S_0) = \mathcal{L}_2(S) + \mathcal{L}_2(\Gamma) + \mathcal{L}_2(S^+)$$

для области $S \subseteq S_0$ с границей $\Gamma = \partial S$ и дополнительной областью $S^+ = S_0 \setminus [S]$, устойчивым (глобальным) марковским свойством обладает всякое обобщенное марковское поле $\eta = (\varphi, \eta)$ непрерывное по $\varphi \in C_0^\infty(S_0)$ относительно $\|\varphi\|_{\mathscr{Z}_2}$ уточним, что марковским называют такое обобщенное случайное поле, для которого соответ-

ствующие $\mathfrak{D}(S)$ и $\mathfrak{D}(S^+)$ условно независимы относительно *граничной* о-алгебры $\mathfrak{D}(\Gamma)$, определяемой как пересечение

$$\mathfrak{B}(\Gamma) = \cap \mathfrak{B}(\Gamma^{\epsilon})$$

по всем (открытым) $\Gamma^z \supset \Gamma$.

В дальнейшем нам удобно будет использовать замкнутые окрестности Γ^* границы $\Gamma = \partial S$, обратившись к марковскому случайному источнику η в (2.1), для которого порождаемые им $\mathfrak{B}(S)$ и $\mathfrak{B}(S^c)$ будут условно независимы относительно $\mathcal{L} = \mathfrak{B}(\Gamma^c)$; более того, для такого источника η , действие которого внутри области S_0 не зависит от граничных условий (2.2) на границе $\Gamma_0 = \partial S_0$, мы имеем соответствующую σ -алгебру $\mathfrak{B}(S)$ условно независимой от σ -алгебры $\mathfrak{B}(S^c) \vee \mathfrak{A}^+(\Gamma_0)$, дополнительно порождаемой граничными величинами (x, ξ^+) , $x \in X^+(\Gamma_0)$. Здесь расщепляющую σ -алгебру $\mathfrak{B} = \mathfrak{B}(\Gamma^c)$ можно расширить до σ -алгебры $\mathfrak{B} = \mathfrak{A}(\Gamma^c) \supseteq \mathfrak{B}(\Gamma^c)$, порождаемой всеми величинами (x, ξ) , supp $x \subseteq \Gamma^c$, с пробными $x \in X(\Gamma^c)$. Дело в том, что в нашей модели (2.1), (2.2) в области $S_0 \subseteq T$ каждая пробная функция $x \in X(\Gamma^c)$ представима как $x = L^*g \circ g \in \mathcal{L}_2(T)$, $L^*g = 0$ в области

$$T \setminus [\Gamma^{\varepsilon}] = (S \setminus [\Gamma^{\varepsilon}]) \cup (S^{\varepsilon} \setminus [\Gamma^{\varepsilon}]),$$

где при разложении

$$g = g^- + g^+$$

на компоненты

$$g^- \in \mathcal{L}_2(S), \quad g^+ \in \mathcal{L}_2(S^c)$$

мы получаем разложение

$$x = x^- + x^+$$

на $x^-, x^+ \in X(\Gamma^\varepsilon)$ с $x^- = L^*g^-$ и $x^+ = L^*g^+$, для которых $(x^-, \xi) = (g^-, \eta) \in \mathfrak{B}(S)$, а $(x^+, \xi) \in \mathfrak{B}(S^\varepsilon) \vee \mathfrak{A}^+(\Gamma_0)$, что непосредственно видно из дополнительного разложения

$$g^+ = g^{+-} + g^{++}$$

на компоненты

$$g^{+-} \in \mathcal{L}_2(S^c \backslash S_0)$$

И

$$g^{++} \in \mathscr{L}_2(S_0^c),$$

для которых

$$(x^+, \xi) = (g^{+-}, \eta) + (x^{++}, \xi^+)$$

с пробными

$$x^{++} = L^*g^{++} \in X^+(\Gamma_0),$$

определяющими внешние граничные условия типа $X^+(\Gamma_0)$ в (2.2). Согласно указанным разложениям, мы имеем представление

$$\mathfrak{A}(\Gamma^{\varepsilon}) = \mathfrak{A}(\Gamma^{\varepsilon})^{-} \vee \mathfrak{A}(\Gamma^{\varepsilon})^{+} \tag{2.19}$$

с $\mathfrak{A}(\Gamma^{\mathfrak{e}})^- \subseteq \mathfrak{B}(S)$ и $\mathfrak{A}(\Gamma^{\mathfrak{e}})^+ \subseteq \mathfrak{B}(S^{\mathfrak{e}}) \vee \mathfrak{A}^+(\Gamma_0)$, которое указывает на то, что расширение $\mathfrak{A}(\Gamma^{\mathfrak{e}}) \supseteq \mathfrak{B}(\Gamma^{\mathfrak{e}})$ является расшепляющей σ-алгеброй для $\mathfrak{B}(S)$ и $\mathfrak{B}(S^{\mathfrak{e}}) \vee \mathfrak{A}^+(\Gamma_0)$. Здесь $\mathfrak{A}(\Gamma^{\mathfrak{e}})$ будет также расщепляющей для расширений

$$\mathfrak{B}(S) \vee \mathfrak{A}(\Gamma^{\varepsilon}) \supseteq \mathfrak{A}(S)$$

И

$$\mathfrak{A}(\Gamma^{e}) \vee \mathfrak{B}(S^{c}) \vee \mathfrak{A}^{+}(\Gamma_{0}) \supseteq \mathfrak{A}(S^{c}),$$

что дает нам устойчивое (глобальное) марковское свойство случайного поля $\xi\colon \mathfrak{A}(S)$ условно не зависит от $\mathfrak{A}(S^\circ)$ относительно $\mathfrak{A}(\Gamma^\circ)$ *).

Вернемся к источнику η с независимыми значениями, когда $\mathfrak{B}(S)$ и $\mathfrak{B}(S^c)$ расщепляются σ -алгеброй $\mathfrak{B}(\Gamma) \subseteq \mathfrak{A}(\Gamma)$, порожденной величинами $(g, \eta), g \in \mathcal{L}_2(\Gamma)$ — понятно, что для границы $\Gamma = \partial S$ нулевой меры $\mathfrak{B}(\Gamma)$ является тривиальной; в случае источника в (2.1), действие которого внутри S_0 не зависит от граничных условий (2.2) на границе $\Gamma_0 = \partial S_0$, для нашей модели (2.1), (2.2) в области $S_0 \subseteq T$ с внешними граничными условиями (или в $S_0 = T$ без каких-либо граничных условий) в силу аналогичного (2.19) разложения

$$\mathfrak{A}(\Gamma) = \mathfrak{A}(\Gamma)^{-} \vee \mathfrak{A}(\Gamma)^{+} \tag{2.20}$$

получается следующий результат

^{*)} Ср., например, Kusuoka S. Markov fields and local operators // Journal of the Faculty of Science, Univ. Tokyo.—1979.—V. 26, № 2.— Р. 199—212, где устанавливается сохранение устойчивого (глобального) марковского свойства при локальных невырожденных преобразованиях вида $L\xi = \eta$ на пространствах типа $\mathcal{F} = \mathcal{L}_2$.

Теорема. Случайное поле ξ обладает устойчивым (глобальным) марковским свойством u, в частности, для любой области $S \subseteq S_0$ σ -алгебры $\mathfrak{A}(S)$ u $\mathfrak{A}(S^\circ)$ условно независимы относительно граничной σ -алгебры $\mathfrak{A}(\Gamma)$ на границе $\Gamma = \partial S$.

Подчеркнем, что устойчивость означает сохранение свойства условий независимости $\mathfrak{A}(S)$ и $\mathfrak{A}(S^c)$ при расширении граничных данных до $\mathfrak{A}(\Gamma^c)$ на любом $[\Gamma^c] \equiv \Gamma$. Однако это вовсе не означает сохранение условной независимости $\mathfrak{A}(S)$ и $\mathfrak{A}(S^c)$ при всяком расширении $\mathfrak{A}(\Gamma)$ до $\mathfrak{A}(\Gamma) \vee \mathfrak{A}(\Gamma^c)$ с каким-либо $\mathfrak{B}(\Gamma^c) \subseteq \mathfrak{A}(\Gamma^c)$, на что уже фактически указывалось выше в примере броуновского движения в модели (2.1), (2.2) с L = d/dt в $T = R^1 \setminus \{0\}$ и гауссовским «белым шумом» $\mathfrak{A}(S) = \mathcal{L}_2(T) = \mathcal{L}_2(R^1)$, когда для $S = (0, \infty)$, $S^c = (-\infty, 0]$ и $\mathfrak{B}(\Gamma^c)$, порожденном обобщенной производной $-\mathfrak{h}' = L^*\mathfrak{h} = \mathcal{P}_{\mathfrak{F}}$ «белого шума» \mathfrak{h} на интервале $\Gamma = (-\varepsilon, \varepsilon)$, мы указали на явную (условную зависимость «будущего» $\mathfrak{A}(S)$ и «прошлого» $\mathfrak{A}(S^c)$ при данных $\mathfrak{A}(\Gamma) \vee \mathfrak{B}(\Gamma^c) = \mathfrak{B}(\Gamma^c)$ с тривпальным $\mathfrak{A}(\Gamma)$ на точечной границе $\Gamma = \{0\}$ с граничным значением $\mathfrak{E}(0) = 0$ — поясним еще, что в противоположность разложению вида (2.19), (2.20) мы здесь имеем

$$\mathfrak{B}(\Gamma^{\varepsilon}) \neq \mathfrak{B}(\Gamma^{\varepsilon})^{-} \vee \mathfrak{B}(\Gamma^{\varepsilon})^{+},$$

где указанная справа о-алгебра порождается компонентами

$$(\phi'_{-}, \eta), (\phi'_{+}, \eta),$$

появляющимися при разложении

$$-\left(\phi,\,\eta'\right)=\left(\phi',\,\eta\right)=\left(\left.\phi'_{-},\,\eta\right)+\left(\left.\phi'_{+},\,\eta\right)\right.$$

 $c \ \phi'_- \in \mathcal{L}_2(S), \qquad \phi'_+ \in \mathcal{L}_2(S^c) \ в \ \phi' = \phi'_- + \phi'_+ \in C_0^\infty(\Gamma^\epsilon). \ \square$ Вернемся к вопросу о наилучшем прогнозе в рассмотренной выше модели, когда в общей граничной задаче (2.17), (2.18) для наилучшего прогноза $u = \widehat{\xi} \in \mathbf{W}(S)$ случайного поля $\widehat{\xi}$ с марковским свойством в области S правая часть $f = \widehat{\eta}$ в уравнении (2.17) может быть определена, согласно разложению (2.20) с $\mathfrak{A}(\Gamma)^- \subseteq \mathfrak{B}(S)$, $\mathfrak{A}(\Gamma)^+ \subseteq \mathfrak{B}(S^c) \vee \mathfrak{A}^+(\Gamma_0)$, как

$$(\varphi, \widehat{\eta}) = E[(\varphi, \eta)/\mathfrak{A}(\Gamma)^{-}], \quad \varphi \in C_{\bullet}^{\infty}(S),$$

гле, напомним,

$$\mathfrak{A}(\Gamma)^- = \{(x, \xi), x \in X^-(\Gamma)\}\$$

отвечает граничным $x=L^*g$ с $g\in \mathscr{L}_2(S)$, $L^*g=0$ в области S. Случай, когда таких $g\in \mathscr{L}_2(S)$ нет, мы охарактеризовали ранее тем, что назвали соответствующие граничные условия типа $X^+(\Gamma)=X(\Gamma)$ в не ш н и м и. Ясно, что в этом случае, когда $\mathfrak{A}(\Gamma)^-=0$, при источнике \mathfrak{q} с нулевым средним в правой части уравнения (2.17) нужно взять f=0 и, более того, саму граничную задачу (2.17), (2.18) нужно заменить более простой граничной задачей с уравнением

$$Lu = 0 (2.21)$$

в области S и внешними граничными условиями

$$(x, u) = (x, \xi), \quad x \in X^+(\Gamma) = X(\Gamma), \quad (2.22)$$

на границе $\Gamma = \partial S$ — ее решение и дает нам наилучший прогноз $u = \widehat{\xi} \in \mathbf{W}(S)$.

Иллюстрацией к этому может служить прогноз на «будущее» в хорошо известной модели (2.1), (2.2) с обыкновенным дифференциальным оператором

$$L = \sum_{h \leqslant p} a_h d^h / dt^h$$

на бесконечном $S_0=(t_0,\infty)$ при граничных условиях (2.2) с (начальными) производными $\xi^{(h)}(t_0)$, $k=0,\ldots,p-1$, задающей случайный процесс $\xi=\xi(t),\ t\geq t_0$, вида

$$\xi(t) = \sum_{k=0}^{p-1} \xi^{(k)}(t_0) u_k(t, t_0) + \int_{t_0}^t u_{p-1}(t, s) \eta(ds),$$

где $u_k(t, t_0)$, $k=0,\ldots,p-1$, есть система решений однородного уравнения Lu=0 в S_0 с траничными условиями

$$u_k^{(m)}(t_0, t_0) = \begin{cases} 1, & m = k, \\ 0, & m \neq k \end{cases} (m = 0, \dots, p-1).$$

а $\eta(ds)$ — стохастическая мера с независимыми значениями, отвечающими источнику η на $\mathcal{F}(S_0)=\mathcal{L}_2(S_0)$. Именно, рассматривая $S=(t,\infty)$, мы видим, что на отрезке $[t_0,\ t]=S^\circ$ случайный процесс ξ определяется начальными $\xi^{(k)}(t_0),\ k=0,\ldots,p-1$, и источником η на

интервале (t_0, t) , и, таким образом, для задаваемых производными $\xi^{(k)}(t)$, $k=0,\ldots,p-1$ граничных значений $\mathfrak{U}(\Gamma)$ на границе $\Gamma=\{t\}$ мы имеем соответственно $\mathfrak{U}(\Gamma)\subseteq\mathfrak{B}(S^c)\vee\mathfrak{A}^+(\Gamma_0)$,

что при независимости от граничного $\mathfrak{A}^+(\Gamma_0)$ на $\Gamma_0 = \{t_0\}$ случайном источнике η с нулевым средним дает для наилучшего прогноза $u = \widehat{\xi} \in \mathbf{W}(S)$ граничную задачу (2.21), (2.22).

ГАУССОВСКИЕ СЛУЧАЙНЫЕ ПОЛЯ

§ 1. Некоторые вспомогательные предложения *)

1° Гауссовские величины и σ -алгебры событий. Имея дело с той или иной совокупностью $\{\xi\}$ действительных случайных величин, их называют *гауссовскими*, если гауссовскими являются совместные распределения вероятностей любых (взятых в конечном числе) величин этой совокупности. Напомним, что гауссовское распределение вероятностей в R^n (распределение случайных величин ξ_1, \ldots, ξ_n) имеет характеристическую функцию

$$E \exp\left\{i \sum_{k=1}^{n} \lambda_{k} \xi_{k}\right\} = \exp\left\{i \sum_{k=1}^{n} a_{k} \lambda_{k} - \frac{1}{2} \sum_{k,j=1} b_{kj} \lambda_{k} \lambda_{j}\right\}.$$

$$(\lambda_{1}, \ldots, \lambda_{n}) \in \mathbb{R}^{n},$$

с параметрами

$$a_k = E\xi_k, \quad b_{kj} = E(\xi_k - a_k)(\xi_j - a_j), \quad k, j = 1, ..., n,$$

которые, подчеркием, непрерывно зависят от величин ξ_1, \ldots, ξ_n в гильбертовом пространстве $\mathbf{H} = \mathcal{L}_2(\Omega)$; отметим, что для ξ_1, \ldots, ξ_n с нулевыми средними и невырожденной корреляционной матрицей $B = \{b_{kj}\}$ в R^n имеется плотность вероятности

$$\frac{1}{(2\pi)^n \det B^{1/2}} \exp\left\{-\frac{1}{2} \left(B^{-1}x, x\right)\right\},$$

$$x = (x_1, \dots, x_n) \in R^n.$$
(1.1)

Ограничимся рассмотрением действительного $\mathbf{H} = \mathscr{L}_2(\Omega)$. В нем замкнутая линейная оболочка $H = H(\xi)$ произвольной совокупности $\{\xi\}$ гауссовских величин дает нам гауссовские же величины $\{\eta\} = H$. Благодаря этому обстоятельству, например, при переходе от гауссовской случайной функции $\xi(t)$, $t \in T$, переменного $t \in T$ в об-

^{*)} См. также Розанов Ю. А. Гауссовские бесконечномерные распределения /Тр. МИАН СССР. Т. 108.— М.: Наука, 1968.

ласти $T \subseteq R^i$ к величинам

$$(\varphi, \xi) = \int \varphi(t) \xi(t) dt. \quad \varphi \in C_0^{\infty}(T),$$

мы получаем обобщенную гауссовскую функцию (φ, ξ) , $\varphi \in C_0^{\infty}(T)$. Остановимся на этом несколько подробнее.

Интеграл от гауссовской функции. Рассмотрим гауссовскую функцию $\xi(t)$, t = T, на измеримом пространстве T с мерой m(dt) как функцию со значениями в пространстве $\mathcal{L}_2(\Omega)$, считая ее (сильно) интегрируемой. Напомним, что кусочио постоянная функция $\xi(t)$, принимающая постоянные значения ξ_k на измеримых множествах $\Delta_k \subseteq T$:

$$\xi(t) = \xi_k, \quad k \in \Delta_k, \quad k = 1, 2, \ldots \quad (\bigcup_k \Delta_k = T),$$

называется интегрируемой, если интегрируемой является числовая функция $\|\xi(t)\|$, $t \in T$; при этом

$$\int_{T} \xi(t) m(dt) = \sum_{k} \xi_{k} m(\Delta_{k});$$

произвольная функция $\xi(t)$ называется *интегрируемой*, если найдется такая последовательность интегрируемых кусочно постоянных функций $\xi_n(t)$. что

$$\lim_{T} \int_{T} \|\xi(t) - \xi_n(t)\| m(dt) = 0; \quad .$$

при этом (сильный) предел

$$\int_{T} \xi(t) m(dt) = \lim_{T} \int_{T} \xi_{n}(t) m(dt)$$

не зависит от выбора анпроксимирующей последовательности. Ясно, что аппроксимирующие функции $\xi_n(t)$ всегда можно взять со значениями в замкнутой линейной оболочке величин $\xi(t)$, $t \in T$ (обозначим ее H), поскольку для проекций $\widehat{\xi_n}(t)$ величин $\xi_n(t)$ на H мы имеем

$$\|\xi(t) - \widehat{\xi}_n(t)\| \le \|\xi(t) - \xi_n(t)\|.$$

Таким образом,

$$\int_{T} \xi(t) m(dt) \in H,$$

где для гауссовских величин $\xi(t)$, $t \in T$, совокупность H является гауссовской.

Отметим, что функция $\xi(t) \in H = \mathcal{L}_2(\Omega), t \in T$, интегрируема тогда и только тогда, когда действительная функция

$$\xi(t) = \xi(\omega, t), \quad (\omega, t) \in \Omega \times T,$$

пары переменных (ω, t) измерима относительно произведения мер $P \times m$ и

$$\int_{T} \|\xi(t)\| m(dt) < \infty.$$

При этом в качестве надлежащей аппроксимирующей последовательности можно взять действительные кусочно постоянные функции $\xi_n(t) = \xi_n(\omega, t)$, принимающие конечное число различных ξ_{nk} на непересекающихся множествах $A_{nk} \times \Delta_{nk}$ с $A_{nk} \in \mathcal{D}$ и $\Delta_{nk} \in \mathcal{T}$ (совокупность множеств указаиного вида порождает σ-алгебру измеримых множеств в произведении $\Omega \times T$). Отметим также, что интеграл $\int \xi(t) m(dt)$ как величина в пространстве $H = \mathcal{L}_2(\Omega)$ есть

$$\int_{T}^{\infty} \xi(t) m(dt) = \int_{T}^{\infty} \xi(\omega, t) m(dt), \quad \omega \in \varphi,$$

где справа стоит интеграл от числовой функции $\xi(\omega, t)$, $t \in T$, при фиксированиом ω ; этот интеграл существует при почти всех $\omega \in \Omega$, поскольку

$$\int_{\Omega} \int_{T} |\xi(\omega, t)| m(dt) P(d\omega) \leqslant \int_{T} ||\xi(t)|| m(dt).$$

Гауссовские σ -алгебры событий. Рассматривая совокупность гауссовских величии $\{\xi\}$ и порождаемую ими σ -алгебру событий $\mathfrak{A}=\mathfrak{A}(\xi)$, можно перейти к их замкнутой линейной оболочке $H=H(\xi)$. При таком переходе, имея дело с различными гауссовскими H и порождаемыми ими σ -алгебрами \mathfrak{A} , пересечение Ω можно охарактеризовать как σ -алгебру, порождаемую гауссовской совокупностью ΩH .

Покажем это для последовательности гауссовских $H=H_n$, $n=0,\ 1,\ \dots$ Используя подпространства H_n в $H=\mathcal{L}_2(\Omega)$, каждое из которых образовано величинами, измеримыми относительно соответствующей σ -алгебры \mathfrak{A}_n ,

достаточно показать, что пересечение

$$\cap \mathbf{H} = \mathbf{H}_{\infty}$$

совпадает с подпространством \mathbf{H}_{∞} величин, измеримых относительно σ -алгебры \mathfrak{A}_{∞} , порожденной гауссовской совокупностью

$$H_{\infty} = \cap H_n$$
.

Не меняя обозначений, будем считать $H_n = \bigcap_{k < n} H_k$. Воспользуемся тем свойством гауссовских H_n , что ортогональные дополнения $H_n^\perp = H_{n-1} \ominus H_n$ будут независимыми при различных $n=1,2,\ldots$, и

$$H_0 = H_\infty \oplus \sum_{n=1}^\infty H_n^\perp$$
.

Обозначив через \mathfrak{A}_n^\perp σ -алгебры, порождаемые H_n^\perp , мы имеем \mathfrak{A}_0 как порождаемую независимыми σ -алгебрами \mathfrak{A}_∞ и

$$\mathfrak{A}_{\infty}^{\perp} = \bigvee_{n=1}^{\infty} \mathfrak{A}_{n}^{\perp}$$
.

Рассмотрим всевозможные произведения $\xi \cdot \xi^{\perp}$ величин в \mathbf{H}_0 , где ξ измеримы относительно \mathfrak{A}_{∞} , а ξ^{\perp} — относительно $\mathfrak{A}_{\infty}^{\perp}$ (скажем, речь идет об ограниченных величинах). Такие $\xi \cdot \xi^{\perp}$ в совокупности образуют полную систему в \mathbf{H}_0 ; при этом в разложении

$$\xi \cdot \xi^{\perp} = (E\xi^{\perp}) \xi + \xi (\xi^{\perp} - E\xi^{\perp})$$

первое слагаемое входит в подпространство \mathbf{H}_{∞} , а второе ортогонально ему, так что всевозможные $\xi(\xi^{\perp}-E\xi^{\perp})$ образуют полную систему в ортогональном дополнении

$$\widetilde{\mathbf{H}}_{\infty}^{\perp} = \mathbf{H}_{0} \ominus \mathbf{H}_{\infty}.$$

Возьмем произвольную величину η из пересечения всех \mathbf{H}_n , $n=1,\,2,\,\ldots$ Будучи измеримой относительно \mathfrak{A}_n , она не зависит от \mathfrak{A}_n^\perp (при каждом $n=1,\,2,\,\ldots$) и, следовательно, не зависит от $\mathfrak{A}_\infty^\perp = \bigvee_n \mathfrak{A}_n^\perp$, что указывает на ортотональность η системе величин $\xi(\xi^\perp - E\xi^\perp)$, и, таким образом, η входит в подпространство $\mathbf{H}_\infty = \mathbf{H}_0 \ominus \mathbf{H}_\infty^\perp$, что и требовалось доказать.

 2° Полиномы от гауссовских величин. Пусть $\{\xi\}$ произвольная совокупность гауссовских величин и $H^p =$

 $=H^{y}(\xi)$ — замыкание в пространстве $H=\mathscr{L}_{2}(\Omega)$

полиномов степени не выше р от величин (ξ). Включив в рассматриваемую совокупность величину $\xi = 1$, можно \mathbf{c} казать, что H^p есть замкнутая линейная оболочка про-

изведений $\xi_1 \dots \xi_k, \ k \leq p$, всевозможных величин из $\{\xi\}$; в частности, $H=H^1$ есть замкнутая линейная оболочка самой совокупности $\{\xi\}$. Очевидно, что H^p не изменится, если в качестве исходной совокупности взять все вели-

 $\xi_1 \dots \xi_k$ непрерывно зависят в $H = \mathscr{L}_2(\Omega)$ от ξ_1, \dots, ξ_k

чины $\{\eta\} = H$. $H^p(\eta) = H^p(\xi)$ - поясним: для гауссовских величин их произведения

и для предельных $\eta_1 = \lim \xi_1, \ldots, \eta_k = \lim \xi_k$

в H^1 получается, что

 $\eta_1 \ldots \eta_k = \lim \xi_1 \ldots \xi_k$

 $\mathbf{B}^{-}H^{p}$. Условные математические ожидания. Рассмотрим произвольную совокупность $\{\eta\} \subseteq H(\xi)$, произвольную величину $\varphi_p(\xi) \in H^p(\xi)$ и ее условное математическое ожидание относительно { η}; оказывается, что

> (1.3) $E\left[\varphi_{p}(\xi)/\{\eta\}\right] \subseteq H^{p}(\eta)$.

(1.2)

Покажем это. При p=1, имея дело с гауссовскими величинами $\phi_1(\xi) = \dot{\xi} \in H^1(\xi)$, получаем

$$E\left[\varphi_{1}(\xi)/\{\eta\}\right]=\widehat{\xi}$$

как проекцию $\hat{\xi}$ величины ξ на подпространство $H^1(\eta)$, поскольку ортогональная к $H^1(\eta)$ гауссовская величина $\xi = \widehat{\xi}$ не зависит от $\{\eta\}$ и

$$E[\xi - \widehat{\xi}/\{\eta\}] = E(\xi - \widehat{\xi}) = 0.$$

Допустив справедливость (1.3) при всех p < q и рассматривая при p=q соответственно $\phi_q(\xi)=\xi_1\dots\xi_s$ возьмем проекции ξ_1, \ldots, ξ_q на $H^1(\eta)$ и положим

$$\psi_q(\xi) = (\xi_1 - \widehat{\xi}_1) \dots (\xi_q - \widehat{\xi}_q).$$

Величина $\psi_q(\xi) \in H^q(\xi)$ не зависит от $\{\eta\}$, и $E[\psi_a(\xi)/\{\eta\}] = E\psi_a(\xi)$.

Разность полиномов $\varphi_q(\xi) - \psi_p(\xi)$ представляется линей-

ной комбинацией произведений вида

$$(\xi_{k_1} \dots \xi_{k_p})(\widehat{\xi}_{k_{p+1}} \dots \widehat{\xi}_{k_q}), \quad p < q,$$

для которых

$$E\left[\left(\xi_{h_1}\dots\xi_{h_p}\right)\left(\widehat{\xi_{h_{p+1}}}\dots\widehat{\xi_{h_q}}\right)/\{\eta\}\right] = \\ = E\left[\left(\xi_{h_1}\dots\xi_{h_p}\right)/\{\eta\}\right]\left(\widehat{\xi_{h_{p-1}}}\dots\widehat{\xi_{h_q}}\right),$$

где, согласно нашему предположению о справедливости включения (1.3) при p < q, мы имеем

$$E\left[\left(\xi_{h_1}\ldots\xi_{h_p}\right)/\left\{\eta_i\right\}\right] \equiv H^p(\eta),$$

п вместе с $\widehat{\xi}_{k_{p+1}}, \ldots, \widehat{\xi}_{k_q} \in H^1(\eta)$ это дает

$$E\left[\left(\xi_{h_1}\dots\xi_{h_p}\right)/\{\eta\}\right]\left(\widehat{\xi_{h_{p+1}}}\dots\widehat{\xi_{h_q}}\right) \in H^q(\eta).$$

В итоге получается, что

$$E\left[\varphi_{\sigma}(\xi)/\{\eta\}\right] = E\left[\varphi_{\sigma}(\xi) - \psi_{\sigma}(\xi)/\{\eta\}\right] + E\psi_{\sigma}(\xi) \in H^{q}(\eta).$$

Ортогональные разложения по полиномам. Для произвольной гауссовской совокупности {\xi} всевозможные полиномы образуют полную систему в подпространстве

$$\mathbf{H}(\xi) \subseteq H = \mathscr{L}_2(\Omega)$$

всех случайных величин, измеримых относительно по-

рождаемой {ξ}*) σ-алгебры ��(ξ).

Обратившись к подпространствам $H^p = H^p(\xi)$, порежденным всеми полиномами $\phi(\xi)$ степени не выше p, можно процессом ортогонализации перейти к подпространствам

$$H_p(\xi) = H^p(\xi) \ominus H^{p-1}(\xi), \quad p = 1, 2, ..., \quad (1.4)$$

включив сюда также $H_0(\xi) = H^0(\xi)$, образованное всеми

$$\lim_{n\to\infty} E\left|e^{i\xi} - \sum_{k\leqslant n} \frac{(i\xi)^k}{k!}\right|^2 = 0,$$

^{*)} Например, непосредственно видно, что для любой лине заой комбинации $\xi = \sum_k \lambda_k \xi_k$ величин из $\{\xi\}$

 $i\sum_k \lambda_k \xi_k$ а функции вида $\phi(\xi) = e^{i\sum_k \lambda_k \xi_k}$ образуют полную систему в комплексном $\mathbf{H}(\xi)$ при любой совокупности действительных величин $\{\xi\}$.

постоянными. Получающиеся таким образом

$$\varphi(\xi) \subseteq H_p(\xi)$$

называют *полиномами Эрмита* от гауссовской совокупности {§}. Понятно, что имеют место ортогональные разложения

$$H^{p}(\xi) = \sum_{k=0}^{p} \oplus H_{k}(\xi), \quad \mathbf{H}(\xi) = \sum_{k=0}^{\infty} \oplus H_{k}(\xi). \tag{1.5}$$

Рассмотрим две произвольные совокунности $\{\xi\}$ и $\{\eta\}$ с тем лишь условием, что их совместные распределения вероятностей являются гауссовскими. Казалось бы, для различных $H_p(\xi)$, $H_q(\eta)$ нет оснований ожидать какихлибо особых связей, однако на самом деле имеет место следующее соотношение ортогональности: $npu\ p \neq q$

$$H_p(\xi) \perp H_q(\eta)$$
. (1.6)

Докажем это. Пусть для определенности p < q. Рассмотрим произвольную величину $\varphi = \varphi(\xi) \in H_q(\xi)$ и ее условное математическое ожидание

$$\widehat{\varphi} = E\left[\varphi/\{\eta\}\right] \subseteq \mathbf{H}^p(\eta)$$

— см. по этому поводу (1.3). Как известно, φ есть проекция величины φ на все подпространство $H(\eta) = H^p(\eta) \oplus \bigoplus_{k>p} H_k(\eta)$ и, в частности, $\varphi - \widehat{\varphi} \perp H_q(\eta)$, q > p, что вместе с ортогональностью $H^p(\eta) \perp H_q(\eta)$ при $\widehat{\varphi} \in H^p(\eta)$ дает $\varphi = (\varphi - \widehat{\varphi}) + \widehat{\varphi} \perp H_q(\eta)$.

Согласно установленным выше свойствам полиномов Эрмита от гауссовских величин (§), для любой совокупности

$$\{\eta\}\subseteq H^1(\xi)$$

подпространство $\mathbf{H}(\eta) \subseteq \mathbf{H}(\xi)$ оказывается инвариантным относительно оператора проектирования на подпространство $H_p(\xi)$, а именно,

$$\mathbf{H}(\eta) \to H_p(\eta);$$
 (1.7)

поясним: в ортогональном разложении $\mathbf{H}\left(\mathbf{\eta}\right)==\sum_{k=0}^{\infty}\oplus H_{k}\left(\mathbf{\eta}\right)$ все $H_{k}\left(\mathbf{\eta}\right)$, $(k\neq p)$, являются ортогональными к

$$H_p(\xi) \supseteq H_p(\eta)$$
.

216

Отметим, что в классическом анализе полиномами Эрмита принято называть полиномы $\varphi_p(x)$ от действительного переменного, ортогональные при различных степенях $p=0,\ 1,\ \ldots$ с «весом» $p(x)=\frac{1}{1/2\pi}e^{-x^2/2}$.

$$\int_{-\infty}^{\infty} \varphi_p(x) \varphi_q(x) p(x) dx = \begin{cases} 0, & p \neq q, \\ 1, & p = q. \end{cases}$$

При любой гауссовской совокупности $\{\xi\}$, взяв в $H=H_1(\xi)$ полную ортонормированную систему $\{\eta\}$, можно получить полную ортонормированную систему во всем пространстве $\mathbf{H}(\xi)=\sum_{k=0}^{\infty}H_k(\xi)$, образовав всевозможные величины вида

$$\varphi_{k_1}(\eta_1) \ldots \varphi_{k_n}(\eta_n)$$

с различными $\eta_1, ..., \eta_n$ из системы $\{\eta\}$.

3° Одна теорема сравнения для квадратичных форм от гауссовских величин. Речь будет идти о сравнении дисперсий квадратичных форм вида

$$\varphi\left(\xi\right) = \sum_{j,k=1}^{n} c_{jk} \xi_{j} \xi_{k}$$

от гауссовской совокупности $\{\xi\}$ относительно различных распределений вероятностей — скажем, P и P_0 . Понятно, что здесь можно было бы говорить о различных $\{\xi\}$ и $\{\xi^0\}$ с распределениями P и P_0 при установленном взаимно однозначном соответствии

$$\xi \leftrightarrow \xi^0$$

величин из рассматриваемых совокупностей $\{\xi\}$ и $\{\xi^0\}$, сравнивая дисперсии соответствующих

$$\varphi(\xi) = \sum_{j,k=1}^{n} c_{jk} \xi_{j} \xi_{k}, \quad \varphi(\xi^{0}) = \sum_{j,k=1}^{n} c_{jk} \xi_{j}^{0} \xi_{k}^{0}.$$

Рассмотрим гауссовские ξ_1, \ldots, ξ_n с нулевым средним и корреляцией

$$B_{jh} = E\xi_j\xi_h, \quad j, \ k=1, \ldots, \ n.$$

Для симметричных

$$\varphi(\xi) - E\varphi(\xi) \subseteq H_2(\xi)$$

 \mathbf{c} коэ рфициентами $c_{jk} = c_{kj}$ получаем

$$E \mid \varphi(\xi) - E\varphi(\xi) \mid^2 = 2 \sum_{j,h} \sum_{l,m} c_{jk} c_{lm} B_{jl} B_{km}.$$

Используя вероятностное пространство Ω с заданным на порождаемой совокупностью $\{\xi\}$ о-алгебре $\mathfrak A$ общим (гауссовским) распределением P и произведение $\Omega \times \Omega$ с вероятностной мерой $P \times P$, обратимся к симметрической билинейной форме

$$\varphi\left(\omega,\,\omega'\right) = \sum_{j,k} c_{jk} \xi_{j}\left(\omega\right) \xi_{k}\left(\omega'\right)$$

от $(\omega, \omega') \in \Omega \times \Omega$; для нее, как легко проверить, $\int \int |\phi(\omega, \omega')|^2 P(d\omega) P(d\omega') =$

$$= \sum_{i \in I} \sum_{l = m} c_{jk} c_{lm} B_{jl} B_{km} = \frac{1}{2} E | \varphi(\xi) - E \varphi(\xi) |^2. \quad (1.8)$$

Pессмотрим теперь различные P и P_0 . Допустим, что для всевозможных линейных форм от $\{\xi\}$

$$E \left| \sum_{k} c_{k} \xi_{k} \right|^{2} \leqslant C E_{0} \left| \sum_{k} c_{k} \xi_{k} \right|^{2}, \tag{1.9}$$

где указанные математические ожидания берутся относительно *P. P*₀. Тогда для всех квадратичных форм $\phi(\xi)$ справедливо неравенство

$$E[\varphi(\xi) - E\varphi(\xi)]^2 \le C^2 E_0 |\varphi(\xi) - E\varphi(\xi)|^2$$
. (1.9').

Покажем это. Очевидно, что в силу (1.8), мы имеем соотношение

$$\begin{split} \int \int |\varphi(\omega, \omega')|^2 P \times P &= \int E \left[\sum_j \left[\sum_k c_{jk} \xi_k(\omega') \right] \xi_j \right]^2 P(d\omega') \leqslant \\ &\leqslant C \int E_0 \left[\sum_j \left[\sum_k c_{jk} \xi_k(\omega') \right] \xi_j \right]^2 P(d\omega') = \\ &= C \int \int |\varphi(\omega, \omega')|^2 P_0 \times P, \end{split}$$

которое аналогичным образом продолжается в неравенство

$$\iint |\varphi(\omega, \omega')|^2 P \times P \leqslant C^2 \iint |\varphi(\omega, \omega')|^2 P_0 \times P_0$$

— оно с учетом полученного выше общего выражения (1.8) для стоящих здесь интегралов и дает неравенство (1.9').

4° Отношение правдоподобия. Рассмотрим гауссовскую совокупность $\{\xi\}$ с различными распределениями вероятностей (скажем, P и P_0). Имея то или иное данное вероятностное пространство Ω с определенными на нем случайными величинами $\xi = \xi(\omega)$, $\omega \subseteq \Omega$, и говоря о распределении вероятностей совокупности $\{\xi\}$, обратимся к соответствующим вероятностным мерам P и P_0 на ε -алгебре \mathfrak{A} , порождаемой $\{\xi\}$. Речь будет идти о плотности

$$p(\omega) = \frac{P(d\omega)}{P_0(d\omega)}$$

как функции от совокупности $\{\xi\}$, которую будем считать индексированной (произвольным) переменным $u\equiv U$, т. е. образованной соответствующе данными величинами

$$\xi(u) = \xi(\omega, u), \quad \omega \in \Omega \quad (u \in U).$$

гауссовские распределения $P,\ P_0$ которых определяются $cpe\partial \mu u m u$

$$A(u) = E\xi(u), A_0(u) = E_0\xi(u)$$

и корреляционными функциями

$$B(u, v) = E[\xi(u) - A(u)] [\xi(v) - A(v)],$$

$$B_0(u, v) = E_0[\xi(u) - A(u)] [\xi(v) - A(v)]$$

or $u, v \in U$.

Обратимся сначала к P и P_0 с одинаковыми корреляционными функциями $B=B_0$, когда различие распределений P и P_0 проявляется в различии средних A и A_0 . Будем считать $A_0=0$ — понятно, что к этому случаю всегда можно перейти, используя преобразование

$$\xi(u) \rightarrow \xi(u) \vdash A_0(u), \quad u \subseteq U,$$

при котором

$$A_0(u) \rightarrow 0$$
, $A(u) \rightarrow a(u) = A(u) - A_0(u)$, $u \in U$.

Рассматривая совокупность $\{\xi\}$ по отношению к распределению P_0 , используем замкнутую линейную оболочку $H=H_1(\xi)$ величин $\xi=\xi(u),\ u\in U$, имеющим по отношению к распределению P среднее $a(u)=E\xi(u),\ u\in U$. Оказывается, что для плотности $p(\omega)=P(d\omega)/P_0(d\omega)$ имеет место формула

$$p = \sigma^2 \exp \{\eta\}, \qquad (1.10)$$

us

 $e\partial e$ $\eta \in \varphi(\omega) \in H(\xi)$ однозначно определяется

уравнения

$$a(u) = \int \xi(\omega, u) \varphi(\omega) P_0(d\omega), \quad u \in U, \quad (1.11)$$

причем само представление (1.11) среднего a(u), $u \in U$, c помощью некоторого $\phi(\omega) \in H$ является необходимым u достаточным условием существования плотности p; постоянная σ^2 в (1.10) определяется нормировкой

$$\int p(\omega) P_0(d\omega) = 1$$

(u imeer eud
$$\sigma^2 = \exp\left\{-\frac{1}{2}E_0\eta^2\right\}$$
).

Понятно, что представление (1.11) и величина $\eta \in H = H_1(\omega)$ не зависят от выбора индексации совокупности $\{\xi\}$ переменным $u \in U$, и (1.11) выражает то факт, что греднее $a(u) = E\xi(u)$, $u \in U$, задает на H линейный непрерывный функционал, который на линейных формах $\sum c_k \xi(u_k)$ принимает значения $\sum c_k a(u_k)$; при этом (1.11) есть фактически представление Рисса этого линейного функционала на полной системе элементов $\xi(u)$, $u \in U$.

Убедиться в справедливости (1.10), (1.11) легче всего. Бративникь сначала к конечному числу ортонормированных величин $\{\xi(u), u=1, ..., n\}$ из H=H (ξ) и порождаемой ими σ-алгебре \mathfrak{A}_n , на которой соответствующая плотность $p_n(\omega)=P(d\omega)/P_0(d\omega)$ с учетом общей формулы (1.1) для гауссовской плотности в R^n будет иметь вид

$$p_n = \exp\left\{\sum_{u=1}^n a(u)\,\xi(u) - \frac{1}{2}\sum_{u=1}^n a^2(u)\right\}.$$

где

$$a(u) = E\xi(u) = \int \xi(\omega, u) \eta_n(\omega) P_0(d\omega)$$

суть коэффициенты ортогонального разложения величины $\eta_n = \sum_{u=1}^n a(u) \, \xi(u)$. Легко видеть, что для расширяющихся конечных совокупностей $\{\xi(u), u=1, ..., n\}$ существование предела

 $p = \lim p_n$

равносильно существованию предела $\eta = \lim \eta_n$, и условия этого могут быть выражены в форме (1.11), позволяющей указать предельную плотность (1.10).

Отметим одно общее положение: P_0 может быть абсолютно непрерывным относительно P лишь при условии эквивалентности

$$E \left| \sum_{h} c_{h} \xi_{h} \right|^{2} \times E_{0} \left| \sum_{h} c_{h} \xi_{h} \right|^{2}$$
 (1.12)

для всевозможных линейных форм $\sum_{k} c_k \xi_k$ от совокупности $\{\xi\}$ — очевидно, что при нарушении этого условия P и P_0 будут взаимно сингулярны. Как мы знаем (см. (4.9), (4.9)'), вместе с (4.42) будет также выполнено условие эквивалентности

$$\int \int |\varphi(\omega, \omega')|^2 P(d\omega) P_0(d\omega') \times E |\eta|^2$$

для всевозможных симметрических билинейных форм

$$\varphi\left(\omega,\,\omega'\right) = \sum_{j,h} c_{jh} \xi_{j}\left(\omega\right) \xi_{h}\left(\omega'\right) = \sum_{j,h} c_{jh} \xi_{j} \otimes \xi_{h}$$

на $\Omega \times \Omega$.

$$\varphi = \varphi(\omega, \omega) = \sum_{j,k} c_{jk} \xi_j(\omega) \xi_k(\omega)$$

на Ω и соответствующих

$$\eta = \varphi - E_0 \varphi \in H_2(\xi),$$

представляющих полиномы Эрмита второго порядка (относительно гауссовского распределения P_0); при этом взаимно однозначное соответствие

$$\varphi(\omega, \omega') \leftrightarrow \eta = \varphi - E_0 \varphi \tag{1.13}$$

между указанными величинами распространяется предельным переходом на все $\eta \in H_2(\xi)$ и соответствующие предельные $\phi(\omega, \omega')$ (совокупность которых обозначим $H \times H$).

Рассмотрим теперь гауссовские распределения P и P_0 для величин $\{\xi\}$, индексированных переменным $v \in U$, с одинаковыми средними $A = A_0 = 0$ и различными корреляционными функциями B и B_0 . Положим

$$b(u, v) = B(u, v) - B_0(u, v), \quad u, v \in U.$$

Оказывается, что ∂ ля плотности $p(\omega) = P(d\omega)/P_{\omega}(d\omega)$ имеет место формула

$$p(\omega) = \sigma^2 \exp\left\{-\frac{1}{2} \eta(\omega)\right\}, \qquad (1.14)$$

§ 1. НЕКОТОРЫЕ ВСПОМОГАТЕЛЬНЫЕ ПРЕДЛОЖЕНИЯ $\partial e \eta \in H_2(\xi)$ однозначно определяется по $\phi(\omega, \omega') \leftrightarrow \eta$

из уравнения $b(u, v) = \int \int \xi(\omega, u) \xi(\omega', v) \varphi(\omega, \omega') P(d\omega) P_0(d\omega'), \quad (1.15)$ причем само представление (1.15) с $\varphi(\omega, \omega') \in H \times H$ яв-

ляется необходимым и достаточным условием существования плотности p; постоянная σ^2 в (1.14) определяется нормировкой

 $\int p(\omega) P_0(d\omega) = 1.$

Задающая плотность (1.14) величина $\eta \in H_2(\xi)$ мо-

жет быть определена с помощью представления (1.45) следующим образом. Возьмем в $II = II_1(\xi)$ любую нолн у ю систему величин, преобразуем ее последовательной ортогонализацией по отношению к скалярным произведениям $E_0 \xi \eta$, $E \xi \eta$ $(\xi, \eta \in H)$

и образуем ортонормированный базис в $H \times H$ из величин $\xi_i \otimes \eta_k = \xi_i(\omega) \eta_k(\omega'), \quad (\omega, \omega') \in \Omega \times \Omega.$ Величина $\varphi(\omega, \omega') \in H \times H$ в (1.15) представима как

в соответствующие ортонормированные системы {ξ_i}. {η_b}

 $\varphi(\omega, \omega') = \sum_{j,k} c_{jk} \xi_j \otimes \eta_k = \lim_{n \to \infty} \sum_{j,k=1}^n c_{jk} \xi_j \otimes \eta_k$

с коэффициентами

причем указанные здесь частичные суммы являются с имметричными величинами в $H \times H$, что видно, например, из представления

 $c_{ib} = E \dot{\epsilon}_i \mathbf{n}_b - E_0 \dot{\epsilon}_i \mathbf{n}_b$

 $\sum_{j=1}^{n} c_{jk} \xi_{j} \otimes \eta_{k} = \sum_{j=1}^{n} \left(\sigma_{j}^{2} - 1\right) \zeta_{j} \otimes \zeta_{j},$ где при данном п в общей линейной оболочке величин

 ξ_{j} $(j=1,\ldots,n)$ и η_{k} $(k=1,\ldots,n)$ использована система величин с

 $E_0 \zeta_j \zeta_h = \begin{cases} 1, & k = j, \\ 0, & k \neq i, \end{cases} E \zeta_j \zeta_h = \begin{cases} \sigma_j^2, & k = j. \\ 0, & k \neq i. \end{cases}$

Согласно (1.15), величина $\eta \in H_2(\xi)$, задающая млотность

(1.14), представима как

$$\eta = \lim_{n \to \infty} \sum_{j,k=1}^{n} (E\xi_{j}\eta_{k} - E_{0}\xi_{j}\eta_{k}) (\xi_{j}\eta_{k} - E_{0}\xi_{j}\eta_{k}) =
= \sum_{j,k} (E\xi_{j}\eta_{k} - E_{0}\xi_{j}\eta_{k}) (\xi_{j}\eta_{k} - E_{0}\xi_{j}\eta_{k}). (1.16)$$

Отметим, что вычисление по этой формуле проводится с номощью ортогонализации произвольно взятой полной системы величин в $H = H(\xi)$ и не требует, скажем, решения задач по отысканию базисной системы $\{\xi_i\}$ в H, ортогональной одновременно по отношению к обоим скалярным произведениям $E_0\xi\eta$, $E\xi\eta$ (ξ , $\eta \in H$).

Поясним, например, как из представления (1.15) вытекает условие эквивалентности (4.12).

Для линейных форм от величин $\{\xi\}$, индексированных переменных $u \in U$, мы имеем

$$E\left|\sum_{k=1}^{n} c_{k} \xi\left(u_{k}\right)\right|^{2} - E_{0}\left|\sum_{k=1}^{n} c_{k} \xi\left(u_{k}\right)\right|^{2} = \sum_{j,k} c_{j} c_{k} b\left(u_{j}, u_{k}\right) =$$

$$= \iint \left[\sum_{j=1}^{n} c_{j} \xi\left(\omega, u_{j}\right)\right] \left[\sum_{k=1}^{n} c_{k} \xi\left(\omega', u_{k}\right)\right] \varphi\left(\omega, \omega'\right) P\left(d\omega\right) P_{0}(d\omega') \leqslant$$

$$\leqslant E\left|\sum_{k=1}^{n} c_{k} \xi\left(u_{k}\right)\right|^{2} E_{0}\left|\sum_{k=1}^{n} c_{k} \xi\left(u_{k}\right)\right|^{2} \iint \left|\varphi\left(\omega, \omega'\right)\right|^{2} P\left(d\omega\right) P_{0}(d\omega'),$$

и видно, что если $E\left|\sum_{k=1}^{n}c_{k}\xi\left(u_{k}\right)\right|^{2}\rightarrow0$, то также

$$E_0 \times \left| \sum_{k=1}^n c_k \xi(u_k) \right|^2 \to 0$$
, и наоборот.

Очевидно, что представление (1.15) и величина $\eta \in H_2(\xi)$ не зависят от выбора индексации совокупности $\{\xi\}$ переменным $u \in U$, и (1.15) выражает тот факт, что разность корреляционных функций задает в гильбертовом $H \times H$ линейный непрерывный функционал, который на билинейных формах $\phi(\omega, \omega') = \sum_{j,k} c_{jk} \xi(\omega, u_j) \xi(\omega', u_k)$ принимает значения $\sum_{i,k} c_{jk} b(u_j, u_k)$; при этом (1.15) есть

фактически представление Рисса этого линейного функционала на полной системе элементов $\xi(\omega, u)\xi(\omega', v)$, $u, v \in U$, в пространстве $H \times H$. Понятно, что представление (1.15) будет иметь место, если в указанном выше смысле разность корреляционных функций b(u, v) задает

линейный непрерывный функционал в гильбертовом $H \times H$ с эквивалентной нормой

§ 1. НЕКОТОРЫЕ ВСПОМОГАТЕЛЬНЫЕ ПРЕДЛОЖЕНИЯ

$$\int \int |\varphi(\omega, \omega')|^2 P_0(d\omega) P_0(d\omega') \times \int \int |\varphi(\omega, \omega')|^2 P(d\omega) P_0(d\omega).$$
 Here were derived the otherwise that the derivation of the property of

Как уже фактически отмечалось, такая эквивалентность есть следствие условия (1.12), и при его выполнении

есть следствие условия (1.12), и при его выполнении (1.15) можно заменить аналогичным представлением
$$b\left(u,v\right)=\int\int \xi\left(\omega,u\right)\xi\left(\omega',v\right)\phi_{0}\left(\omega,\omega'\right)P_{0}\left(d\omega\right)P_{0}\left(d\omega'\right)$$
 (1.15)'

с соответствующим $\varphi_0(\omega, \omega') \subseteq H \times H$. Подчеркием, что это представление равносильно (1.15) лишь при условии эквивалентности (1.12). Обратившись к (1.15), рассмот-

эквивалентности (1.12). Обратившись к (1.15), рассмотрим линейный ограниченный оператор в гильбертовом
$$H = H_1(\xi)$$
, определяемый билинейной формой
$$E\xi\eta = \xi_0 \xi \eta = \langle \xi, b\eta \rangle_H \qquad (1.17)$$

от ξ , $\eta \in H$; имея $\langle \xi(u), b\xi(v) \rangle_H = \int_0^{\infty} \xi(\omega, u) [b\xi(\omega, v)] P_0(d\omega) = b(u, v) =$

$$= \int_{\Omega} \xi(\omega, u) \left[\int_{\Omega} \varphi_{0}(\omega, \omega') \xi(\omega', v) P_{0}(d\omega') \right] P_{0}(d\omega),$$

видим, что этот оператор, определяемый разностью
$$b\left(u,v\right)$$
, вадается ядром $\phi_{0}(\omega,\omega')$ $\equiv H \times H,$

$$b\eta\left(\omega\right) = \int\limits_{\Omega} \varphi_{0}(\omega, \, \omega') \, \eta\left(\omega'\right) P_{0}\left(d\omega\right)$$

- напомним, что этого типа операторы составляют класс операторов Гильберта — Шмидта. В итоге получается, что для абсолютной непрерывности P относительно $P_{\mathbf{0}}$ необходимо и достаточно, чтобы выполнялось условие эквивалентности (1.12) и определяемый разностью корреляций оператор в (1.17) был бы оператором Гильберта — III мидта*).

Условие (1.15) на разпость корреляционных функций, очевидно, является симметричным по отношению к Р и P_0 — при перемене их местами лишь меняется знак самой разности и величины $\phi(\omega, \omega') \in H \times H$; это показывает,

Math.— 1960.— V. 10.— P. 1211—1220.

^{*)} Это условие было указано Фелдманом — см. Feldman J. Equivalence and perpendicularity of Gaussian processes // Pacific J.

что зауссовские распределения P и P_0 либо взаимно абсолютно непрерывны (эквивалентны), либо взаимно сингулярны.

Убедиться в справедливости (1.14), (1.15) легче всего, обратившись сначала к конечному числу величин $\{\xi(u),\ u=1,\ ...,\ n\}$ в $H=H_1(\xi)$, ортонормированных по отношению к распределению P_0 и ортогональных по отношению к P

$$E\xi(u)^2 = \sigma^2(u), \quad u = 1, ..., n.$$

На люрождаемой ими σ -алгебре \mathfrak{A}_n соответствующая плотность $p_n(\omega) = P(d\omega)/P_0(d\omega)$ с учетом общей формулы (1.1) для гауссовской плотности в R^n будет иметь вид

$$p_n = \sigma^2 \exp\left\{-\frac{1}{2} \, \eta_n\right\}.$$

где $\eta_n = \varphi_n - E\varphi_n \leftrightarrow \varphi_n(\omega, \omega')$ согласно (1.13) соответствует билинейной форме

$$\varsigma_n(\omega, \omega') = \sum_{u=1}^n \frac{\sigma^2(u) - 1}{\sigma^2(u)} \xi(\omega, u) \xi(\omega', u),$$

— поясним, что в представлении (1.15), отвечающим выбранной нами индексации $\{\xi(u), u=1, \ldots, n\}$, мы имеем

$$b(u, v) = E\xi(u)\xi(v) - E_0\xi(u)\xi(v) = \begin{cases} \sigma^2(u) - 1, & v = u, \\ 0, & v \neq u \end{cases}$$

кожіж фициентами при ортогональных $\xi(\omega, u)\xi(\omega', u)$ $u, v=1, \ldots, n$, в $H \times H$. Для расширяющихся конечных совыкупностей, каждая из которых может быть индексирована указанным выше способом как $\{\xi(u), u=1, 2, \ldots n\}$, существование предела

$$p = \lim p_n$$

равносильно существованию предела $\eta = \lim \eta_n$, и условия этого могут быть выражены в форме (1.15), позволяющей непосредственно указать предельную илотность (1.14). \square

Указанному критерию эквивалентности гауссовских распределений P, P_0 для семейства $\{\xi(u)\}$ случайных величин $\xi(u) = (u, \xi)$, индексированных пробными $u \in \mathcal{D} = C_0^\infty(T)$ и образующих обобщенное случайное поле $\xi = (u, \xi)$ в области $T \subseteq R^d$, можно придать несколько иную форму, выразив этот критерий непосредственно че-

рез корреляционные операторы B, B_0 рассматриваемых распределений. Напомним, мы ввели корреляционный оператор (остановимся для определенности на B_0) как

$$B_0: \mathscr{D} \to \mathscr{D}^*,$$

при каждом $u \in \mathcal{D}$ задающим обобщенную функцию $B_{0}u \in \mathcal{D}^*$.

$$B_0u = (\varphi, B_0u) = E_0(\varphi, \xi)(u, \xi), \quad \varphi \in \mathcal{D},$$

и его можно рассматривать в рамках общей схемы § 1 гл. І на собственном для є гильбертовом пространстве $W_0 = [\mathcal{D}]$, которое отвечает скалярному произведению

$$\langle \varphi, u \rangle_{W_0} = E_0(\varphi, \xi)(u, \xi), \quad \varphi, \ u \in \mathcal{D},$$

и является изометричным пространству $H = H_1(\xi)$ — замыканию всех величин $(\varphi, \xi), \varphi \in \mathcal{D},$ в $\mathbf{H} = \mathcal{L}_2(\Omega);$ при этом B_0 совпадает на $\mathscr{D} \subseteq W_0$ с унитарным оператором

$$B_0: W_0 \to X_0$$

в сопряженное гильбертово $W_0^* = X_0 \subseteq \mathcal{D}'$. Заменив H = $=H_1(\xi)$ на изометричное W_0 с плотным в нем $D=C_0^\infty(T)$, критерий эквивалентности гауссовских распределений Р, P_0 можно выразить следующим образом; корреляционный В является обратимым оператором

$$B: W_0 \supseteq \mathcal{D} \to X_0 \subseteq \mathcal{D}^*$$

таким, что разность

$$B - B_0$$
: $W_0 \to X_0$ (1.17')

есть оператор Гильберта — Шмидта.

§ 2. Идентификация коэффициентов стохастических дифференциальных уравнений по реализации их решения

1° Условия эквивалентности и взаимной сингулярности гауссовских распределений. Обратимся к предложенной нами в § 1 гл. II модели обобщенного случайного поля $\xi = (x, \xi), \quad x \in D = C_0^{\infty}(T),$ представляющего единственное решение $\xi \in W$ стохастического уравнения

$$L\xi = \eta$$

в области $T \subseteq \mathbb{R}^d$, гле, напомним, L может быть дифференциальным оператором общего вида при его рассмотрении в пространстве $\mathscr{F}=\mathscr{L}_2(T)$ или это может быть дифференциальный оператор вида $L = \mathcal{P} \geqslant 0$ в отвечающем $\hat{\mathbf{e}}_{\mathbf{M}}\mathbf{v}$ пространстве $\hat{\mathbf{F}} = \hat{\mathbf{W}} = [\mathcal{D}]$ со скалярным произвепением

$$\langle u, v \rangle_w = (u, \mathcal{P}v), \quad u, v \in \mathcal{D};$$

стохастический источник η будем считать представленным гауссовским белым шумом на соответствующем \mathcal{F} . Имея дело с различными операторами L, поставим вопрос об эквивалентности соответствующих распределений вероятностей для $\xi = (x, \xi), x \in \mathscr{D}$.

Здесь речь идет о гауссовских распределениях с нулевым средним и корреляционным оператором B, который, как мы знаем (см. 2° § 1 гл. III), имеет вид

$$B = \mathcal{P}^{-1}. (2.1)$$

где $\mathscr{P} = L^*L$ в модели с оператором L в $\mathscr{F} = \mathscr{L}_2(T)$ и $\mathscr{P} = L$ в модели с $L \ge 0$ в $\mathscr{F} = W = [\mathscr{D}]$; напомним в связи с этим, что $\xi = (x, \xi)$, $x \in \mathcal{D}$, представляет единственное решение ξ∈W стохастического дифференциального уравнения

$$\mathcal{P}\xi = \eta \tag{2.2}$$

с источником «белого шума» η на $W = [\mathcal{D}]$, и использование уравнения общего вида (2.2) непосредственно дает указанную в (2.1) связь с соответствующим распределением вероятностей. Уточним еще, что

$$B = \mathcal{P}^{-1} \colon X \to W$$

есть унитарный оператор, задающий представление Рисса сопряженного $W = X^*$ к пространству обобщенных пробных функций $x \in X = [\mathcal{D}]$ типа W, являющегося собственным для $\xi = (x, \xi), x \in \mathcal{D}$.

Рассмотрим модель (2.2) с оператором $\mathscr{P} = \mathscr{P}_0$ в пространстве $W = W_0$ и другим оператором \mathscr{P} в его W = $=[\mathcal{D}]$, обозначив через P и P_0 гауссовские распределения отвечающего им $\xi = (x, \xi), x \in \mathcal{D}$. Условие эквивалентности Р, Ро включает эквивалентность

$$||x||_X^2 = E|(x,\xi)|^2 \times E_0|(x,\xi)|^2 = ||x||_{X_0}^2, \quad x \in \mathcal{D},$$

которая и будет предполагаться в дальнейшем; при этом, как мы знаем, корреляционный B будет обратимым оператором

$$B = \mathcal{P}^{-1}$$
: $X_0 \to W_0$,

а необходимое и достаточное условие эквивалентиости гауссовских $P,\ P_0$ будет выражаться в том, что

$$B - B_0: X_0 \to W_0$$
 (2.4)

есть оператор Гильберта — Шмидта; здесь в сравнении с (1.47') лишь поменялись местами обозначения W_0 и X_0 соответствующих пространств типа W. Это равносильно тому, что оператором Гильберта — Шмидта является

$$(B-B_0)\mathcal{P}_0: W_0 \to W_0$$

с унитарным

$$\mathscr{P}_0 = B_0^{-1}$$
: $W_0 \to X_0 = \mathscr{P}_0 W_0$.

Умножив

$$(B - B_0) \mathcal{P}_0 = B \mathcal{P}_0 - I$$

слева на обратимый (ограниченный с ограниченным обратным $B=\mathcal{P}^{-1}$) оператор $\mathcal{P},$ получим следующий результат.

Tеорема. Для эквивалентности гауссовских $P,\ P_0$ необходимо и достаточно, чтобы разность

$$\mathscr{P} - \mathscr{P}_0 \colon W_0 \to X_0$$
 (2.5)

представляла оператор Гильберта — Шмидта. 🗆

Для примера обратимся к невырожденным эллиптическим операторам \mathcal{P} , \mathcal{P}_0 порядка 2p на соболевском $W_0 = -\mathring{W}_2^p(T)$ с

$$\|u\|_{W_0}^2 \times \|u\|_p^2 = \sum_{|b| \le n} \int |\partial^b u|^2, \quad u \in D.$$

Будем считать, что $\mathscr P$ и $\mathscr P_0$ имеют гладкие коэффициенты с ограниченными k-ми производными, $|k|\leqslant 2p$. Покажем, что разность

$$A = \delta \mathcal{P} = \sum_{|h| \leqslant q} w_k \partial^h$$

$$A: \mathring{W}_{2}^{p}(T) \to \mathring{W}_{2}^{n}(T)$$

 ${f c}$ показателем $n\leqslant p-q$. Действительно, оператор диф-

ференцирования

$$\partial \colon \mathring{W}_{2}^{m}(T) \to \mathring{W}_{2}^{m-1}(T)$$

является ограниченным при всех $m=0,\pm 1,\ldots$, что очевидно при m>0, а при $m\leqslant 0$ получается, например, из ограниченности билинейной формы

$$|(\varphi, \partial x)| = |(\partial \varphi, x)| \le ||\partial \varphi||_{-m} ||x||_m \le C ||\varphi||_{-m+1} ||x||_m$$

от $\varphi \in C_0^{\infty}(T)$, $x \in \mathring{W}_2^m(T)$, дающей

$$\|\partial x\|_{m-1} = \sup_{\|\phi\|_{-m+1} \le 1} |(\phi, \, \partial x)| \leqslant C \|x\|_{m};$$

оператор умножения на гладкую функцию w=w(t) с ограниченными k-ми производными, $|k| \leq m$, будет ограниченным в любом \mathring{W}_2^m , что очевидно при $m \geq 0$ и получается при m < 0 из ограниченности формы

$$|(\varphi, wx)| = |(w\varphi, x)| \le ||w\varphi||_{-m} ||x||_m \le C ||\varphi||_{-m} ||x||_m$$

от $\varphi \in C_0^{\infty}(T)$, $x \in W_2^m(T)$, дающей

$$||wx||_{m} = \sup_{\|\varphi\|_{-m} \le 1} |(\varphi, wx)| \le C ||x||_{m},$$

и в итоге указаниая ограниченность $A = \sum_{|k| < q} a_k \partial^k$ получается последовательным применением операторов дифференцирования и умножения на функции. Как мы знаем, для n = p - q > -p вложение

$$I: W_2^n(T) \to W_2^{-p}(T)$$

будет оператором Гильберта — Шмидта при

$$n - (-p) = n + p > d/2$$

и, следовательно, в схеме

$$W_2^p(T) \xrightarrow{A} W_2^n(T) \xrightarrow{I} W_2^{-p}(T)$$

с ограниченным А произведение IA будет оператором Гильберга — Шмидта, представляющим

A:
$$W_2^p(T) \to W_2^{-p}(T)$$
.

Поясним: в случае сопряженных ограниченного A^* и Гильберта — Шмидта I^*

$$\sum_{j} \|A^*I^*v_j\|_p^2 \leqslant C \sum_{j} |I^*v_j|_n^2 < \infty$$

для ортонормированного базиса в $\tilde{W}_{2}^{-p}(T)$. Таким образом, соотношение

 $n + p = 2\rho - q > d/2$

является условием того, что $A = \delta \mathscr{P} = \mathscr{P} - \mathscr{P}_0$ будет оператором Гильберта — Шмидта, и в итоге для стохастических эллиптических уравнений типа (2.2) с различными дифференциальными операторами

$$\mathscr{P} = \sum_{|h| \le 2p} a_h \partial^h \tag{2.6}$$

порядка 2p в ограниченной области $T \subseteq R^d$ d-мерного R^d и отвечающих им гауссовских распределений получается следующий результат *).

T е о р е м a. P аспределения P, P_0 эквивалентны условии, что операторы \mathscr{P} , \mathscr{P}_0 имеют одинаковыми все старшие коэффициенты порядка |k| > q с целым

$$q < 2p - d/2.$$
 (2.7)

Как уже фактически отмечалось по поводу операторов Гильберта — Шмидта, перавенство (2.7) не может быть улучшено — имеются простые примеры, в которых при обратном неравенстве условие эквивалентности (2.5) нарушается. В дальнейшем мы представим широкий класс такого рода примеров, в которых по реализации случайного поля Е, описываемого стохастическим уравнением (2.2) с эллиптическим оператором $\mathscr{P}=\sum a_k \hat{\sigma}^k$, однозначно определяются все коэффициенты a_i , $\overline{|k|} > q$, c указанным выше q.

Согласно этому, решение $\xi \in W$ стохастического уравнения (2.2) при различных $\mathscr P$ (имеющих различие в старших коэффициентах a_k , |k| > q, указанного в (2.7) порядка) будет иметь взаимно сингулярные распределения Р, что дает принципиальную возможность безопибочно идентифицировать по отдельной реализации & соответctronnee \hat{P}^{**}).

^{*)} Cp. In oue K. Equivalence of measures for some class of Gaussian fields // J. Multivar. Anal.—1976.—V. 6, № 2.—P. 295— 308; Соколова С. Д. Об эквивалентности гауссовских мер, отвечающих решениям стохастических дифференциальных уравнений // Теория вероят, и ее примен.— 1983.— Т. 28, № 2.— С. 429—

^{**)} Отметим, однако, что для случайного ξ, распределение вероятностей Р которого принадлежит данному семейству взаимно сингулярных распределений, вообще отнюдь не всегда по реализа-

 2° Идентификация коэффициентов. Обратимся к вопросу об идентификации коэффициентов дифференциального оператора $\mathscr P$ в стохастическом уравнении (2.2) по реализации его решения *) $\xi \in W$, остановившись на случае постоящых коэффициентов, когда оператору

$$\mathcal{P} = \mathcal{P}(\partial) = \sum_{\langle \alpha \rangle} a_{\alpha} \partial^{\alpha} \tag{2.8}$$

с $\alpha = (\alpha_1, \ldots, \alpha_d)$ из данной совокупности $\{\alpha\}$, индексирующей производные ∂^{α} , отвечает полином

$$\mathcal{P} = \mathcal{P}(z) = \sum_{\langle \alpha \rangle} a_{\alpha} z^{\alpha} \geqslant 0$$

от $z=e^{i\lambda}$, $\lambda \in R^d$ (см. по этому поводу § 2 гл. II).

Примером отпосящихся сюда результатов может служить известная теорема Леви**), согласно которой для броуновского движения $\xi = \xi(t)$, $t \ge 0$, с коэффициентом диффузии σ^2 при почти всех реализациях (скажем, на интервале I = (0, 1)) мы имеем

$$\sigma^2 = \lim_{n \to \infty} \sum_{m=0}^{n-1} \left| \xi\left(\frac{k+1}{n}\right) - \xi\left(\frac{k}{n}\right) \right|^2$$

— напомним, что броуновское движение представляет обобщенное решение $\xi \subseteq W$ простейшего уравнения (2.2) с оператором

$$\mathscr{P} = -\frac{1}{\sigma^2} \frac{d^2}{dt^2}$$

на полупрямой $T = (0, \infty)$.

ции ξ можно определить соответствующее P; скажем, хорошо известен пример гауссовских распределений P на плоскости, каждое из которых имеет носитель на своей прямой, где оно есть одномерное гауссовское распределение с данными параметрами — понятно, по реализации ξ можно определить лишь весь пучок прямых, проходящих через точку $\xi = x$ на плоскости, и не более того.

*) См. Горяннов В.Б. О теоремах типа Леви — Бакстера для стохастических эллиптических уравнений // Теория верояти и се примен.— 1988.— Т. 33, № 1.— С. 176—179, а также Арато Н. М. Об одной теореме для обобщенных гауссовских полей // Теория верояти. и ее примен.— 1989.— Т. 34, № 4.— С. 409—411,

где рассматриваются переменные коэффициенты.

**) См. еще, например, Розанов Ю. А. Бесконечномерные гауссовские распределения/Тр. МИАН СССР, т. 108.— М.: Наука, 1968, где имеются предельные теоремы типа Леви — Бакстера, позволяющие идентифицировать параметры в семействе взаимно сингулярных гауссовских распределений для широкого класса случайных процессов.

Мы обратимся к стационарному решению $\xi \in W$ в $T = R^d$, условия существования которого выражаются ло-кальной интегрируемостью функции

$$f(\lambda) = \frac{1}{\mathscr{P}(i\lambda)}, \quad \lambda \in \mathbb{R}^d,$$
 (2.9)

представляющей спектральную плотность обобщенного стационарного гауссовского поля $\xi = (x, \xi), x \in C_0^\infty(\mathbb{R}^d)$. Зато при этом мы откажемся от условия невырожденности

$$\left| \sum_{|\alpha|=2p} a_{\alpha} z^{\alpha} \right|^2 \geqslant c |z|^{2p},$$

относительно \mathscr{P} в (2.8) предполагая лишь, что $a_{\beta} \neq 0$ для $\beta \in \{\alpha\}$, являющихся крайними точками выпуклой оболочки в R^d всех имеющихся α старшего порядка $|\alpha| = 2p$, и что полином $\mathscr{P}(z)$ является мажорантой своих членов,

$$|z^{\alpha}| \le C\mathcal{P}(z) \tag{2.10}$$

для данной в (2.8) совокупности { α } (очевидно, что указанные здесь требования будут выполнены при условии невырожденности $\mathcal{P}(z)$ для совокупности всех α , $|\alpha| \leq 2p$).

Предваряя точные формулировки, коротко можно сказать, что каждый коэффициент в (2.8) порядка

$$|\alpha| > 2p - d/2 \tag{2.11}$$

определяется по реализации $\xi = (\varphi, \xi), \ \varphi \in C_0^\infty(I)$, в сколь угодно малой области $I \subseteq R^d$ (мы возьмем для удобства обозначений единичный куб $I = (0, 1)^d$) с помощью квадратичных функционалов вида

$$S_n = \sum_{m} \frac{1}{B_n} \left[(Q \varphi_{mn}, \xi)^2 - A_n \right]; \tag{2.12}$$

здесь для каждого мультипидекса $\alpha = (\alpha_1, \ldots, \alpha_d)$ из (2.11) берутся надлежащий дифференциальный оператор Q, нормирующие постоянные A_n , B_n и функции $\varphi_{mn}(t) = \varphi(n^{\gamma}t - m)$, получающиеся из $\varphi \in C_0^{\infty}(I)$ указанным преобразованием сжатия—переноса с подходящим $\gamma = (\gamma_1, \ldots, \gamma_d)$ и $m = (m_1, \ldots, m_d)$ на целочисленной решетке с $m_h = 0, \ldots, n^{\gamma_h} - 1$ $(k = 1, \ldots, d)$, где целое $n \to \infty$.

Перейдем к более детальному описанию процедуры определения коэффициентов a_{α} указанного в (2.11) порядка. Начнем с крайних старших $\alpha = \beta$, $|\beta| = 2p$, для каждого из них выбирая подходящее γ , дающее

$$(\alpha, \gamma) < (\beta, \gamma) \tag{2.13}$$

при всех $\alpha \neq \beta$; здесь, например, можно взять γ с компонентами

$$\gamma_k \sim 1 + \varepsilon \beta_k^0 \quad (k = 1, \ldots, d),$$

указанными при малом є с точностью до $o(\varepsilon)$, где $\beta^0 = (\beta_1^0, \ldots, \beta_d^0)$ задает гиперилоскость $\{\lambda: (\lambda, \beta^0) = (\beta, \beta^0)\}$ в R^d , отделяющую все $\alpha \neq \beta$ с

$$(\alpha, \gamma) \sim |\alpha| + \varepsilon(\alpha, \beta^0) < 2p + \varepsilon(\beta, \beta^0) \sim (\beta, \gamma).$$

Для каждого крайнего $\alpha=\beta$ возьмем

$$Q = \partial^{\beta}$$
,

$$A_n = 0, \quad B_n = n^{(\beta,\gamma)} \left(\varphi, \, \partial^\beta \varphi \right) = n^{(\beta,\gamma)} \int |\widetilde{\varphi}(\lambda)|^2 (-i\lambda)^\beta \, d\lambda.$$

Вообще, используя тот или иной дифференциальный оператор $Q=Q(\partial)$ с постоянными коэффициентами и отвечающий ему полином $Q=Q(i\lambda)$, для соответствующих величии $(Q\phi_{mn}, \xi)$ в (2.12) стационарного поля ξ со слектральной плотностью (2.9) мы имеем

$$E | (Q \mathfrak{q}_{mn}, \xi)|^2 = E | (Q \mathfrak{q}_{0n}, \xi)|^2 = \int_{\mathbb{R}} |\widetilde{\mathfrak{q}}_{0n}(\lambda)|^2 \frac{|Q(i\lambda)|^2}{\mathscr{P}(i\lambda)} d\lambda,$$

где преобразование Фурье $\widetilde{\phi}_{0n}$ есть

$$\widetilde{\varphi}_{0n}\left(\lambda\right) = \frac{1}{(2\pi)^{d/2}} \int e^{i\lambda t} \varphi\left(n^{\gamma}t\right) dt = n^{-|\gamma|} \widetilde{\varphi}\left(\lambda n^{-\gamma}\right), \quad \lambda \in \mathbb{R}^d,$$

что сразу же получается после замены $n^{\tau}t \rightarrow t$, точнее,

$$n^{\gamma_k}t_k \to t_k \quad (k=1,\ldots,d),$$

с якобианом $n^{|\gamma|}$, $|\gamma| = \gamma_1 + \ldots + \gamma_n$. После аналогичной замены $\lambda n^{-\gamma} \to \lambda$ с якобианом $n^{-|\gamma|}$ приходим к выражению

$$E\left[\left(Q\mathfrak{q}_{mn},\,\xi\right)
ight]^{2}=n^{-|\gamma|}\int\left|\widetilde{\mathfrak{q}}\left(\lambda
ight)
ight|^{2}rac{\left|\left.Q\left(i\lambda n^{\gamma}
ight)
ight|^{2}}{\mathscr{P}\left(i\lambda n^{\gamma}
ight)}d\lambda.$$

В нем для

$$\mathscr{P}(i\lambda n^{\gamma}) = \sum_{\{\alpha\}} a_{\alpha} (i\lambda)^{\alpha} n^{(\alpha,\gamma)}$$

(2.14)

и $Q(i\lambda n^{\gamma}) = (i\lambda)^{\beta} n^{(\beta,\gamma)}$ в силу неравенства (2.13) при $n \to \infty$

мы имеем

$$\frac{|Q(i\lambda n^{\gamma})|^2}{\mathscr{P}(i\lambda n^{\gamma})} \sim \frac{1}{a_{\beta}} (-i\lambda)^{\beta} n^{(\beta,\gamma)},$$

$$E | (Q \varphi_{mn}, \xi)|^2 \sim \frac{1}{a_{\beta}} \int |\widetilde{\varphi}(\lambda)|^2 (-i\lambda)^{\beta} d\lambda \cdot n^{(\beta, \gamma)} = \frac{B_n}{a_{\beta}},$$

что для S_n в (2.12), где число различных $m=(m_1,\ldots,m_d)$ составляет $n^{[\hat{\gamma}]}$, дает $\lim_{n\to\infty} ES_n := 0$

 $c \theta = 1/a_{\beta}$. Покажем, что

$$\lim_{n \to \infty} E |S_n - \theta|^2 = 0.$$
 (2.15)

При условии (2.14) для

$$S_n - ES_n = \frac{1}{B_n} \sum_{m} \eta_{mn}$$

с величинами

$$\eta_{mn} = (Q\varphi_{mn}, \xi)^2 - E(Q\varphi_{mn}, \xi)^2 \in H_2,$$

являющимися полиномами Эрмита второй степени OT гауссовского поля Е, нужно показать, что

$$\frac{1}{B^2} E \left| \sum_{m} \eta_{mn} \right|^2 \to 0.$$

Corлacнo известному нам свойству (см. (1.9), (1.9)'), величины $\eta_{mn} \in H_2$ в сравнении с соответствующими

$$\mathring{\eta}_{mn} = (\mathcal{P}_{\Psi mn}, \ \xi)^2 - E(\mathcal{P}_{\Psi mn}, \ \xi)^2$$

имеют

$$E \left| \sum_{m} \eta_{mn} \right|^2 \leqslant CE \left| \sum_{m} \eta_{mn}^0 \right|^2; \tag{2.16}$$

поясним: условие (2.10) дает нам неравенство $|O(z)|^2 \leq C |\mathcal{P}(z)|^2$

а вместе с ним и неравенство

$$E\left(Q\varphi_{mn},\,\xi\right)^{2} = \int |\widetilde{\varphi}_{mn}(\lambda)|^{2} \frac{|Q\left(i\lambda\right)|^{2}}{\mathscr{P}\left(i\lambda\right)} d\lambda \leqslant$$

 $\leq C \int |\widetilde{\varphi}_{mn}(\lambda)|^2 \frac{|\mathscr{P}(i\lambda)|^2}{\mathscr{P}(i\lambda)} d\lambda = E (\mathscr{P}\varphi_{mn}, \xi)^2$

для соответствующих гауссовских величин

$$\xi_{mn} = (Q q_{mn}, \xi) \leftrightarrow (\mathcal{P} q_{mn}, \xi) = \xi_{mn}^0.$$

В правой части (2.16) величины n_{mn-1}^0 являются независимыми, поскольку независимыми являются

$$\xi_{mn}^0 = (\mathcal{P} \varphi_{mn}, \, \xi) = (\varphi_{mn}, \, \eta)$$

с пробными $\varphi_{mn} \in C_0^\infty(I)$, имеющими непересекающиеся носители— напомним, в рассматриваемой нами модели $\mathscr{P}\xi = \eta$ есть обобщенное случайное поле с независимыми значениями, точнее, обобщенное гауссовское поле с нулевым средним и корреляционным оператором $\mathscr{P} = \mathscr{P}(\partial)$.

С учетом стационарности при суммировании по всем m (их число составляет $n^{[\gamma]}$) получаем

$$\begin{split} E\left|\sum_{m}\eta_{mn}^{0}\right|^{2} &= \sum_{m}E\left|\eta_{mn}^{0}\right|^{2} = \\ &= n^{|\gamma|}E\left|\left(\mathcal{P}\varphi_{0n},\,\xi\right)^{2} - E\left(\mathcal{P}\varphi_{0n},\,\xi\right)^{2}\right|^{2} = n^{|\gamma|}\cdot2\left[E\left(\mathcal{P}\varphi_{0n},\,\xi\right)^{2}\right]^{2} = \\ &= n^{|\gamma|}\cdot2\left[n^{-|\gamma|}\int\left|\widetilde{\varphi}\left(\lambda\right)\right|^{2}\frac{|\mathcal{P}\left(i\lambda n^{\gamma}\right)|^{2}}{|\mathcal{P}\left(i\lambda n^{\gamma}\right)|^{2}}d\lambda\right]^{2} \leqslant Cn^{-|\gamma|+2\max(\alpha,\gamma)}. \end{split}$$

В итоге при $B_n = (\varphi, \partial^{\beta} \varphi) n^{(\beta, \gamma)}$ получается, что

$$E|S_n - ES_n|^2 \leqslant Cn^{-2(\beta,\gamma)-|\gamma|+2\max(\alpha,\gamma)},$$

где для $\gamma = (\gamma_1, ..., \gamma_d)$ с компонентами $\gamma_n = 1 + O(\epsilon)$ при малом ϵ мы имеем

$$(\beta, \gamma) = |\beta| + O(\varepsilon), \quad |\gamma| = d + O(\varepsilon),$$

 $\max(\alpha, \gamma) = 2p + O(\varepsilon),$

и видно, что если

$$|\beta| > 2p - d/2,$$

то при достаточно малом в

$$E|S_n - ES_n|^2 \le Cn^{-\delta} \tag{2.17}$$

с некоторым $\delta > 0$. Это вместе с (2.14) доказывает предельное соотношение (2.15) и, более того, доказывает, что при достаточно быстро растущих n (скажем, $n=2^N$ с целым $N \to \infty$) мы имеем

$$\lim S_n = \theta \tag{2.18}$$

Согласно этому, определяются все крайние старшие $\beta \in \{\alpha\}$. Перейдем к остальным α , последовательно упорядочив их так, что при уже выбранных старших $\alpha > \beta$ очередное по старшинству β из оставшихся α берется как $\alpha = \beta$ наибольшего порядка $|\beta| = \max$ и наибольшей евклидовой нормы $\|\beta\| = (\beta, \beta)^{1/2}$ в R^d . Используя для очередного $\beta = (\beta_1, \ldots, \beta_d)$ отвечающее ему γ с компонентами

$$\gamma_k \sim 1 + \varepsilon \beta_k, \quad k = 1, \ldots, d.$$

указанными с точностью до $o(\epsilon)$, при достаточно малом ϵ будем иметь для всех $\alpha < \beta$ перавенство (2.13),

$$(\alpha, \gamma) \sim |\alpha| + \varepsilon(\alpha, \beta) < |\beta| + \varepsilon(\beta, \beta) \sim (\beta, \gamma);$$

указывая γ с точностью до $o(\epsilon)$, мы возьмем его так, чтобы в с е (β, γ) с крайними старшими β^j были различны, что дает

$$(\alpha, \gamma) < \max_{\{\beta^j\}} (\beta^j, \gamma) = (\beta^*, \gamma) \tag{2.19}$$

для всех α . не являющихся крайними — поясним: для α порядка $|\alpha|=2p$, принадлежащим выпуклой оболочке крайних $\{\beta^j\},\ \alpha=\sum_j c_j\beta^j$ с коэффициентами $0\leqslant c_j < 1$ $(\sum c_j=1)$. и мы имеем при различных $(\beta^j,\ \gamma)$ строгое неравенство

$$(\alpha, \gamma) = \sum_{j} c_{j}(\beta^{j}, \gamma) < \max_{\{g_{j}\}} (\beta^{j}, \gamma).$$

Зная ранее определенные коэффициенты a_{α} с $\alpha > \beta$, включая все крайние старшие $\alpha = \beta^{j}$, для определения коэффициента a_{α} с очередным $\alpha = \beta$, старшим по отношению к остальным $\alpha < \beta$, в (2.12) используем дифференциальный оператор

$$Q = Q(\partial) = \sum_{\alpha > \beta} a_{\alpha} \partial^{\alpha},$$

положив

$$A_n = \frac{1}{n^{|\gamma|}} \left(\varphi, \sum_{\alpha > \beta} a_{\alpha} n^{(\alpha, \gamma)} \partial^{\alpha} \varphi \right) = \frac{1}{n^{|\gamma|}} \int |\widetilde{\varphi}(\lambda)|^2 Q(i\lambda n^{\gamma}) d\lambda,$$

$$B_n = n^{(\beta,\gamma)} \left(\varphi, \, \partial^{\beta} \varphi \right) = n^{(\beta,\gamma)} \int |\widetilde{\varphi}(\lambda)|^2 (-i\lambda)^{\beta} d\lambda$$

с ү, отвечающим данному β . Не повторяя фактически проведенных уже выкладок, с учетом четности $\mathscr{P}(-z) = \mathscr{P}(z)$

укажем сразу, что

$$\begin{split} ES_{n} &= \frac{1}{B_{n}} \int |\widetilde{\varphi}(\lambda)|^{2} \left[\frac{|Q(i\lambda n^{\gamma})|^{2}}{\mathscr{D}(-i\lambda n^{\gamma})} - Q(i\lambda n^{\gamma}) \right] d\lambda = \\ &= \frac{1}{B_{n}} \int |\widetilde{\varphi}(\lambda)|^{2} \left[a_{\beta} (-i\lambda)^{\beta} n^{(\beta,\gamma)} + \sum_{\alpha < \beta} a_{\alpha} (-i\lambda)^{\alpha} n^{(\alpha,\gamma)} \right] \times \\ &\times \frac{\sum_{\alpha > \beta} a_{\alpha} (i\lambda)^{\alpha} n^{(\alpha,\gamma)}}{\sum_{\alpha} a_{\alpha} (i\lambda)^{\alpha} n^{(\alpha,\gamma)}} d\lambda, \end{split}$$

где отношение под интегралом имеет в числителе все крайние $\alpha=\beta^j$, так что, согласно неравенству (2.19) с крайним β^* , (β^* , γ) = $\max_j (\beta^j, \gamma)$, это отношение асимитотически при $n \to \infty$ есть

$$\frac{a_{\beta*}(i\lambda)^{\beta*}n^{(\beta*,\gamma)}+\dots}{a_{\beta*}(i\lambda)^{\beta*}n^{(\beta*,\gamma)}+\dots}\sim 1,$$

и с выбранным B_n асимптотически

$$ES_n \sim a_{\beta} \frac{1}{B_n} n^{(\beta, \gamma)} \int |\widetilde{\varphi}(\lambda)|^2 (-i\lambda)^{\beta} d\lambda = a_{\beta}.$$

Таким образом, мы получаем предельное соотношение (2.14) с $\theta = a_{\rm B}$, а вместе с ним также и соотношение (2.15), поскольку фактически проведенная уже оценка дисперсий величин S_n , на которые не влияют значения постоянных A_n , дает нам (2.17). Как следствие, мы имеем предельное соотношение (2.18), при почти всех реализациях ξ определяющее $\theta = a_{\rm B}$.

Сформулируем итоговый результат в виде следующего

предложения.

Теорема. При почти всех реализациях ξ справедливо предельное соотношение (2.18) с $\theta = 1/a_{\alpha}$ для крайних старших α и $\theta = a_{\alpha}$ для остальных α порядка $|\alpha| > 2p - d/2$.

Видно, в частности, что при большой размерности-

$$d > 4p \tag{2.20}$$

предельное соотношение (2.18) определяет все коэффициенты a_{α} (полностью определяет дифференциальный оператор $\mathscr P$ в нашей стохастической модели (2.2)— полностью определяет спектральную плотность (2.9) возни-

кающего в этой модели стационарного гауссовского поля ξ). □

В дополнение отметим, что для гипоэллиптических уравнений любое решение в (2.2) отличается от стационарного ξ лишь на слагаемое, которое как решение $u \in W(S)$ одпородного уравнения $\mathcal{P}u = 0$ в области S есть соответственно гладкая функция — такая, скажем, что при использовании нами дифференциальных операторов Q мы имеем ограниченные функции Qu = f и для них (с вероятностью 1)

$$\sum_{m} (\varphi_{mn}, f)^{2} \leqslant n^{|\gamma|} \cdot C \left[\int |\varphi(n^{\gamma}t)| dt \right]^{2} \leqslant C n^{-|\gamma|} \to 0,$$

и в силу этого выраженное в (2.18) свойство распространяется со стационарного решения на любые решения ξ уравнения (2.2).

3° Об оценках корреляционного оператора. Обратив-

шись к стохастической модели

$$\mathcal{P} \xi = \eta$$

с оператором

$$\mathscr{P} \colon W \to X$$

и гауссовским белым шумом на отвечающем $\mathcal{P} \geqslant 0$ пространстве $W = [\mathcal{D}]$, $\mathcal{D} = C_0^\infty(T)$ в области $T \subseteq R^t - (\text{см.}(2.2))$, коротко остановимся на вопросе об оценках корреляционного оператора $B = \mathcal{P}^{-1}$ в обстановке, когда известно, что распределение вероятностей обобщенного случайного поля $\xi \subseteq W$ принадлежит семейству гауссовских распределений $\{P\}$, эквивалентных данному $P = P_0$ с корреляционным оператором $B = B_0$, отвечающим в рамках рассматриваемой нами модели оператору $\mathcal{P} = \mathcal{P}_0$ $(B_0 = \mathcal{P}_0^{-1})$.

Располагая оператором \mathscr{P}_0 : $W_0 \to X_0$ для каждого \mathscr{P} и отвечающего ему W, введем дифференциальный оператор $\mathscr{P} \otimes \mathscr{P}_0$, действующий на функции w(s, t) в области

$$(s, t) \in T \times T \subseteq R^{2d}$$

таким образом, что \mathscr{P} и \mathscr{P}_0 действуют по своим переменным s и t. Используя тензорное произведение $W \ni W_0$ с плотным в нем $C_0^{\infty}(T \times T)$, будем иметь

$$\mathcal{P} \otimes \mathcal{P}_0: W \otimes W_0 \to X \otimes X_0$$

как унитарный оператор в сопряженное пространство $X\otimes X_0=(W\otimes W_0)^*$ — точно в плане общей схемы § 1

гл. І; уточним, для элементов

$$u \otimes v = u(s)v(t) \in W \otimes W_0$$

с компонентами $u, v \in C_0^{\infty}(T)$ мы имеем

$$(\mathcal{P} \times \mathcal{P}_0) (u \times v) = \mathcal{P}u \otimes \mathcal{P}_0 v \in X \otimes X_0$$

 $c \ x = \mathcal{P}u \in X, \ y = \mathcal{P}_0 v \in X_0.$

Отметим, что фактически мы уже использовали падлежащее тензорное произведение при выводе формулы (1.14) для плотности $p(\omega) = P(d\omega)/P_0(d\omega)$, элементами которого служили величины $\varphi(\omega, \omega')$ на произведении $\Omega \times \Omega$ —с очевидно понятными изменениями обозначений применительно к совокупности гауссовских (x, ξ) , $x \in D = C_0^\infty(T)$, указаппые $\varphi(\omega, \omega')$ суть

$$\varphi(\omega, \omega') = \sum_{j,k} c_{jk} (x_j, \xi) (x_k, \xi)_{\omega'}$$

— см. (1.13). Учитывая, что для каждого \mathscr{P} случайное поле $\xi \in \mathbf{W}$ является гауссовским белым шумом на X = [D], приходим к изометрии

$$\varphi(\omega, \omega') \leftrightarrow \sum_{j,k} c_{jk} (x_j \otimes x_k) \equiv X \otimes X_0,$$
 (2.21)

согласно которой введем обозначение

$$\varphi(\omega, \omega') = (z, \xi \times \xi)_{\omega, \omega'}, \quad z = \sum_{j,k} c_{jk} (x_j \otimes x_k).$$

Напомним, что при выводе формулы (1.14) мы использовали изоморфизм

$$(z, \xi \times \xi)_{\omega,\omega'} \leftrightarrow \eta = \varphi - E_0 \varphi \in H_2(\xi)$$
 (2.21')

— на него в дальнейшем будем указывать соответствующим обозначением

$$\eta = (z, \ \xi \times \xi), \quad z = X \otimes X_0,$$

для величин $\eta \in H_2(\xi)$; добавим здесь, что при $\mathscr{P} = \mathscr{P}_0$ мы имеем в (2.21') изометрию

$$(z, \, \xi \times \xi)_{\omega,\omega'} \leftrightarrow \frac{1}{\sqrt{2}} (z, \, \xi \times \xi) \in H_2(\xi).$$

Согласно (2.21), представление (4.15) для разности корреляционных операторов $b=B-B_0$ дает нам

$$(x, by) = \int \int (x \otimes y, \xi \times \xi)_{\omega,\omega'} (z, \xi \times \xi)_{\omega,\omega'} P(d\omega) \times P_0(d\omega') =$$

$$= \langle x \otimes y, z \rangle_{X \otimes X_0}, \quad x, y \in D = C_0^{\infty}(T),$$

239

с полной в $X \otimes X_0$ системой $\{x \otimes y\}$, и это можно интерпретировать так, что разность $b = B - B_0$ задает на всевозможных пробных

$$x \otimes y = x (s) y (t) \in C_0^{\infty} (T \times T)$$

обобщенную функцию $b \in W \otimes W_0$, определенную как

$$(x \otimes y, b) \equiv (x, by) = \langle x \otimes y, z \rangle_{X \otimes X_0}$$

- попятно, что при такой интерпретации мы имеем $z = (\mathscr{P} \times \mathscr{P}_0) b$.

Итак, в рамках предложенной здесь схемы критерий эквивалентности гауссовских Р, Ро выражается в терминах разности $b = B - B_0$ условием

$$(x \otimes y, b) = (x, by) \in W \otimes W_0, \tag{2.22}$$

причем

$$p(\omega) = \frac{P(d\omega)}{P_0(d\omega)} = \sigma^2 \exp\{(z, \xi \times \xi)\},$$

$$z = (\mathcal{P} \times \mathcal{P}_0, b).$$
(2.23)

Взяв произвольную полную систему функций в W и процессом ортогонализации по отношению к скалярным произведениям

$$(u, \mathcal{P}v), (u, \mathcal{P}_0v), u, v \in W,$$

преобразовав ее соответственно в ортонормированные системы $\{u_i\}$, $\{v_k\}$, согласно (1.16), получим, что

величина $\eta \in H_2(\xi)$ в формуле (2.23) представима как

$$\eta = \sum_{j,h} \left[(u_j, \mathcal{P}v_k) - (u_j, \mathcal{P}_0v_k) \right] \left[(\mathcal{P}_0u_j, \xi) (\mathcal{P}v_k, \xi) - (u_j, \mathcal{P}_0v_k) \right].$$

Рассматривая вопрос об оценках корреляционного оператора B, можно перевести его в вопрос об оценках функционального параметра $\theta=b$ в пространстве $W\otimes W_0$ из данного семейства θ ,

$$\theta \in \Theta \subseteq W \otimes W_0$$
.

Величины

$$\eta_{\theta} = (z, \xi \times \xi) = (z_{\theta}, \xi \times \xi)$$

в формуле (2.23) для плотности вероятности распределений $P=P_{\theta}$, отвечающих $\theta=b=B-B_{0}$, зависят от параметра $\theta \in W \otimes W_0$ линейно, так что в обстановке, когда $\Theta \subset W \otimes W_0$ вместе с любыми $\theta_1, \ldots, \theta_n \in \Theta$ содержит их линейные комбинации $\theta = \sum_{k} \lambda_{k} \theta_{k}$ с $(\lambda_{1}, \ldots, \lambda_{n})$ из некоторой области в R^{n} , мы имеем в (2.23) экспоненциальное семейство плотностей.

Для их параметров могут быть применены известные методы оценивания *) — здесь, скажем, в качестве исходных данных можно использовать величины

$$(x \otimes y, \ \xi \times \xi) = (x, \ \xi) (y, \ \xi) - (x, B_0 y),$$

являющиеся несмещенными оценками для значений

$$(x \otimes y, \theta) = (x, By) - (x, B_0y)$$

при всевозможных пробных $x,y \in X$ (напомним здесь, что при условии эквивалентности (2.3) пространства $X = X_0$ отличаются лишь эквивалентными нормами).

§ 3. Оценка осредненных решений стохастических дифференциальных уравнений

1° Постановка задачи **). Наилучшие несмещенные оценки. Можно представить, что введенная в гл. III общая стохастическая модель, описываемая в области $S \subseteq T \subseteq R^d$ стохастическим дифференциальным уравнением

$$L\xi = \eta$$

и граничными условиями

$$(x, \xi) = (x, \xi^+), \quad x \in X^+(\Gamma),$$

на границе $\Gamma = \partial S$, возникает в обстановке, когда главным объектом является обобщенное решение $u \in W(S)$ соответствующей детерминированной задачи

$$Lu = f,$$

 $(x, u) = (x, u^{+}), \quad u \in X^{+}(\Gamma),$ (3.1)

которое в результате стохастических возмущений оказывается спрятанным в случайном поле ξ , являясь его детерминированной составляющей

$$u = E\xi$$
.

**) Близкие вопросы рассматривались Л. Маркушем (диссерта-

ция, МГУ, 1990 г.).

^{*)} См., например, Леман Е. Проверка статистических гипотез.— М.: Наука, 1964.

и здесь, непосредственно имея дело с наблюдаемым ξ , нужно оценить неизвестное $u \in W(S)$.

Мы рассмотрим среднее $u=\theta$ как неизвестный параметр соответствующего распределения вероятностей P_{θ} совокупности случайных величин

$$(x, \xi), x \in X(S),$$

индексированных пробными $x \in X(S) = W(S)^*$, считая, что $\theta \in \Theta$ принадлежит определенному множеству $\Theta \subseteq W(S)$ в отвечающем схеме (3.1) функциональном пространстве W(S), и предполагая распределения P_{θ} гауссовскими, будем считать, что вместе с каждыми линейно независимыми $\theta_1, \ldots, \theta_n \in \Theta$ множество Θ содержит все $\theta = \sum_{k=1}^{n} \lambda_k \theta_k$ с ($\lambda_1, \ldots, \lambda_n$) из некоторого n-мерно-

го параллеленинеда в R^n . При $\theta=0$ гауссовские величины $(x, \xi), x \in X(S)$, представляют те стохастические возмущения, которые накладываются на решение $u=\theta$ граничной задачи (3.1), и, обратившись к их распределению вероятностей P с пулевым средним $E(x, \xi)=0$, уточним, что все P_θ отличаются от P лишь соответствующим средним

$$(x, \theta) = E_{\theta}(x, \xi), \quad x \in X(S).$$

Сами стохастические возмущения с распределением $P=P_0$ будем считать по своей природе близкими к белому шуму на гильбертовом X(S), а именно, при $E(x,\,\xi)\equiv 0$ такими, что

$$E | (x, \xi) |^2 \simeq ||x||_X^2, \quad x \in X(S).$$
 (3.2)

Мы используем распределение P и отвечающее ему пространство $\mathbf{H} = \mathcal{L}_2(\Omega)$ величин $\mathbf{\eta} = \mathbf{\eta}(\omega)$, $\omega \in \Omega$, на вероятностном Ω , являющихся функциями от совокупности «наблюдаемых» величин (x, ξ) , $x \in X(S)$ — точнее, измеримых относительно σ -алгебры $\mathfrak{A} = \mathfrak{A}(\xi)$, порожденной этой совокупностью. При условии эквивалентности (3.2) все распределения P_{θ} имеют относительно $P = P_{0}$ плотность вероятности

$$p_{\theta}(\omega) = \frac{P_{\theta}(d\omega)}{P(d\omega)} = \sigma_{\theta}^2 \exp{\{\eta_{\theta}\}} \in \mathbf{H},$$
 (3.3)

задаваемую соответствующими величинами $\eta_{\theta} \subseteq H = H_1(\xi)$, каждая из которых однозначно определяется уравнением

$$(x, \theta) = E(x, \xi) \eta_{\theta}, \quad x \in X(S). \tag{3.4}$$

Поясним, что $\theta = u \in W(S)$ есть линейная непрерывная функция от $x \in X(S)$, и в силу условия (3.2) (x, θ) задает линейную непрерывную функцию от $(x, \xi) \in H$; добавим, что представление (3.4) распространяется с совскупности величин $\eta = (x, \xi)$ на их замыкание $H = H_1(\xi)$ в H, выражая равенство

$$E_{\theta}\eta = E(\eta \cdot \eta_{\theta}), \quad \eta \in H,$$

так что рассматривая пространство пробных функций $x \in X(S)$ с плотным в нем $C_0^\infty(S)$, мы имеем плотную в $H = H(\xi)$ совокупность величин $(x, \, \xi), x \in C_0^\infty(S)$, и, согласно этому, в определяющих величины $\{\eta_\theta\}$ представлении (3.4) можно ограничиться переменным $x \in C_0^\infty(S)$.

Попятно, что согласно (3.3) для любого $\eta \in H(\xi)$ имеется конечное математическое ожидание

$$E_{\theta}\eta = E\eta p_{\theta}, \quad \theta \subseteq \Theta.$$

Обозначив через \mathfrak{B} σ -алгебру, порождаемую всеми величинами p_{θ} , $\theta \subseteq \Theta$, отметим, что совокупность $\{p_{\theta}\}$ образует достаточную статистику, относительно которой условное математическое ожидание

$$E_{\theta}(\eta/\mathfrak{B}) = E(\eta/\mathfrak{B})$$

любой величины $\eta \in \mathbf{H}(\xi)$ не зависит от $\theta \in \Theta$,— поясним:

$$\begin{split} \int_{\mathcal{B}} E\left(\eta/\mathfrak{B}\right) P_{\theta}\left(d\omega\right) &= \int_{\mathcal{B}} E\left(\eta/\mathfrak{B}\right) p_{\theta} P\left(d\omega\right) = \\ &= \int_{\mathcal{B}} E\left(\eta \cdot p_{\theta}/\mathfrak{B}\right) P\left(d\omega\right) = \int_{\mathcal{B}} \eta p_{\theta} P(d\omega) = \int_{\mathcal{B}} \eta P_{\theta}\left(d\omega\right) \end{split}$$

при всех
$$B \in \mathfrak{B}$$
, так что $E_{\theta}(\eta/\mathfrak{B})$ задается величиной $\widehat{\eta} = E(\eta/\mathfrak{B})$.

При том или ином пробном $x \in X(S)$ используем в качестве возможной оцепки неизвестного значения (x, θ) величины $\eta \in \mathbf{H}(\xi)$, обладающие свойством несмещенности:

$$E_{\theta}\eta = (x, \theta), \quad \theta \in \Theta,$$

— тривнальной оценкой такого рода может служить $\eta = (x, \xi)$.

Как известно, для каждой несмещенной оценки $\eta \in H(\xi)$ имеется улучшенная несмещенная оценка

$$\widehat{\eta} = E(\eta/\mathfrak{B}) = E_{\vartheta}(\eta/\mathfrak{B}),$$

которая лучше исходной η в том смысле, что среднеквадратическая ошибка в оценке $\widehat{\eta}$ меньше, поскольку

$$E_{\theta}|\eta - (x, \theta)|^2 =$$

$$= E_{\theta} |\widehat{\eta} - (x, \theta)|^2 + E_{\theta} |\eta - \widehat{\eta}|^2 \geqslant E_{\theta} |\widehat{\eta} - (x, \theta)|^2.$$

Получаемая указапным выше способом улучшениая оценка η является измеримой относительно σ-алгебры B, точнее,

$$\widehat{\eta} = E(\eta/\mathfrak{B}) \in \mathbf{H}(\mathfrak{B}) \tag{3.5}$$

входит в подпространство $\mathbf{H}(\mathfrak{B})$ всех измеримых относительно \mathfrak{B} величин из $\mathbf{H}(\xi)$. При условии полноты достаточной статистики $\{p_{\theta}\}$, означающей в рассматриваемой схеме полноту величин p_{θ} , $\theta \in \Theta$, в подпространстве $\mathbf{H}(\mathfrak{B})$, имеется лишь е ди и с т в е и и а я песмещенная оценка $\eta \in \mathbf{H}(\mathfrak{B})$, поскольку для разпости такого рода оценок $\eta = \eta_1$, η_2 получается

$$E_{\theta}(\eta_1 - \eta_2) = E(\eta_1 - \eta_2) p_{\theta} = 0, \quad \theta \in \Theta,$$

что в силу полноты $\{p_{\theta}\}$ влечет $\eta_1 = \eta_2$ в $\mathbf{H}(\mathfrak{B})$.

Наложенное нами условие на множество $\Theta \subseteq W(S)$, указывающее, что в экспоненциальной совокупности (3.3) вместе с каждыми липейно независимыми $\eta_0 = \eta_1, \ldots, \eta_n$

имеются $\eta_{\theta} = \sum_{k=1}^{n} \lambda_k \eta_k$ с $(\lambda_1, \ldots, \lambda_n)$ из некоторого n-мерного параллеленинеда R^n , дает полноту экспоненциального семейства величин $\{p_{\theta}\}$ вида (3.3) в $\mathbf{H}(\mathfrak{B})$ — это следует,

семейства величин $\{p_{\theta}\}$ вида (3.3) в $\mathbf{H}(\mathfrak{B})$ — это следует, например, из полноты всевозможных $\exp\left\{i\sum_{k=1}^{n}\lambda_{k}\eta_{k}\right\}$ с $(\lambda_{1},\ldots,\lambda_{n})\in R^{n}$ в комплексиом $\mathbf{H}(\mathfrak{B})$ *).

Таким образом, в классе всех несмещенных оценок $\eta \in \mathbf{H}(\xi)$ для неизвестного значения (x,θ) мы имеем е ди н с т в е н н у ю оценку из $\mathbf{H}(\mathfrak{B})$, которая, как указано в (3.5), получается из любой другой несмещенной оценки η ее осреднением относительно \mathfrak{B} , представляя таким образом наилучшую оценку

$$\widehat{\eta} = (x, \widehat{\theta})$$

^{*)} Поясним: для любой величины $\eta \in \mathbf{H}(\mathfrak{B})$ выражение $E\eta \exp\left\{\sum_{k=1}^n z_k \eta_k\right\}$ определяет целую аналитическую функцию комплексных (z_1,\ldots,z_n) , которая тождественно равна 0 (и, в частности, при $z_1=i\lambda_1,\ldots,z_n=i\lambda_n$), если она равна 0 в некотором n-мерном параллелепипеде действительного R^n .

с наименьшей среднеквадратической оппокой

$$E[(x, \widehat{\theta}) - (x, \theta)]^2 = \min$$

Отправляясь от тривнальной песмещенной оценки $\eta = (x, \, \xi)$ и получая наилучшую оценку как среднее

$$(x,\,\widehat{\theta})=E_0\left[\,(x,\,\xi)/\mathfrak{B}
ight]$$
 относительно σ-алгебры \mathfrak{B} , порождаемой гауссовской

совокупностью $\{\eta_{\theta}\}$ из (3.3), заключаем, что $(x, \widehat{\theta})$ принадлежит замкнутой линейной оболочке $H\{\eta_{\theta}\}$ величин η_{θ} , $\theta \in \Theta$, и в этом смысле наплучшая оценка $(x, \widehat{\theta})$ является

$$(x, \widehat{\theta}) \subseteq H\{\eta_{\theta}\}.$$

Если принять во впимание общее представление (3.4) относительно паилучшей оценки $\eta = (x, \hat{\theta})$ с $E_{\theta} \eta = (x, \theta)$, $\theta \in \Theta$, то получается следующий результат:

Теорема. Наиличшая несмешенная оценка θ . из

Теорема. Наилучшая несмещенная оценка (x, θ) однозначно определяется как $(x, \widehat{\theta}) = H\{\eta_{\theta}\},$

линейной:

$$E(x,\ \widehat{\theta})\,\eta_{\theta}=(x,\ \theta),\quad \theta\in\Theta.$$
 (3.6)
Отметим, что при наложениом нами на множество $\Theta\subseteq$

 $\subseteq W(S)$ условии наилучшая песмещенная оценка (x, θ) для (x, θ) , $\theta \subseteq \Theta$, будет также паилучшей песмещенной оценкой для (x, θ) и в обстановке, когда вместо исходного Θ рассматривается его (замкнутая) линейная оболочка в пространстве W(S), к которой нам и будет удобно перейти, обозначив ее тем же Θ (поясим, такой переход не

меняет соответствующей σ -алгебры \mathfrak{B}). Рассмотрим задачу о наилучишх оценках неизвестного среднего $u=\theta$ в (3.1) при стохастических возмущениях с

$$E | (x, \xi) |^2 = \sigma^2 ||x||_X^2, \quad x \in X(S).$$
 (3.7)

Мы знаем, что пространство пробных функций X(S) представляет сопряженное $W(S)^*$ и получается в общей схеме (3.1) как

$$X(S) = \mathcal{P}W(S)$$

при помощи оператора $\mathscr{P}, \mathscr{P} = L^*L$ в схеме (3.1) с общим оператором L в пространстве $\mathscr{F} = \mathscr{L}_2$ и $\mathscr{P} = L$ в схеме (3.1) с положительным $L \ge 0$ в соответствующем $\mathscr{F} = W$.

Согласно (3.7), мы пмеем

$$E(x, \xi) (\mathcal{P}u, \xi) = \sigma^2 \langle x, \mathcal{P}u \rangle_x = \sigma^2(x, u)$$

при всех $x \in X(S)$, $u \in W(S)$ — в частности

$$E(x, \xi) (\mathcal{P}\theta, \xi) \equiv \sigma^2(x, \theta),$$

и непосредственно видно, что везичины η_{ϑ} в представлении (3.4) есть

$$\eta_{\theta} = \frac{1}{\sigma^2} \left(\mathscr{P} \theta, \xi \right), \quad \theta \in \Theta.$$
(3.8)

Взяв ортонормированный базис $\{\theta_k\}$ в $\Theta \subseteq W(S)$, с помощью ушитарного оператора $\mathscr{P}\colon W(S) \to X(S)$ получаем ортонормированную систему $\{\mathscr{P}\theta_k\}$ в пространстве X(S), который в подпространстве $H\{\eta_\theta\}$ — замкнутой линейной оболочке величин η_θ , $\theta \subseteq \Theta$, отвечает ортонормированный базис $\{\sigma^{-1}(\mathscr{P}\theta_k, \, \xi)\}$. Используя ортогопальное разложение

$$(x,\widehat{\theta}) = \sum_{k} c_{k} (\mathcal{P}\theta_{k}, \xi)$$

искомой оценки (x, θ) , из (3.6) можно определить коэффициенты

$$c_k = E(x, \widehat{\theta}) \frac{1}{\sigma^2} (\mathcal{P}\theta_k, \xi) = (x, \theta_k).$$

чи (3.1) — точнее, оденок его значений (x, θ) на пробных $x \in X(S)$, при стохастических возмущениях типа (3.7) получается следующий результат.

T е о р е м а. Наилучшие оценки $(x, \widehat{\theta})$ могут быть получены с помощью ортогонального разложения

$$(x,\widehat{\theta}) = \sum_{k} (x, \theta_k) (\mathcal{P}\theta_k, \xi). \tag{3.9}$$

Уточним, что речь идет об оценках $(x, \widehat{\theta})$ при фиксированном $x \in X(S)$, при каждом из которых (3.9) представляет ряд по ортогональному базису в $H\{\eta_{\theta}\}$ из величин $\eta_{h} = (\mathcal{P}\theta_{h}, \xi)$, отвечающих ортонормированной системе $\{\theta_{h}\}$ в W(S). Представив этот ряд в виде

$$(x,\widehat{\theta}) = \sum_{k} \eta_{k}(x,\theta_{k}), \quad x \in X(S),$$

для копечномерного Θ получим функциональную оценку

$$\widehat{\theta} = \sum_{k} \eta_{k} \theta_{k} \in \Theta \tag{3.10}$$

неизвестного решенпя $u=\theta$ в (3.1). К сожалению, функциональное разложение (3.10) по ортопормированному базису $\{\theta_k\}$ в Θ не действует для бесконечномерного Θ , поскольку $\sum_k ||\eta_k||^2 = \infty$ с вероятностью 1 для независимых гауссовских величин $\eta_k = (\mathcal{P}\theta_k, |\xi|)$, $E|\eta_k|^2 = \sigma^2$ — здесь можно гарантировать лишь сходимость с вероятностью 1 ряда $\sum_k \eta_k(x,\theta_k)$, для которого при каждом $x \in X(S)$ мы имеем

$$E_0 \sum_k ||\eta_k(x, \theta_k)||^2 = \sigma^2 \sum_k ||(x, \theta_k)||^2 \leqslant \sigma^2 ||x||_X^2.$$

Отметим еще, что формула (3.9) для наилучших оценок не зависит от множителя σ^2 в (3.7), характеризующего интенсивность стохастических возмущений типа белого шума.

 2° Псевдонаилучшие оценки и метод наименьших квадратов; условие состоятельности. Легко представить себе обстановку, когда при оценках решения $u \in W(S)$ граничной задачи (3.1) распределение вероятностей имеющих место стохастических возмущений оказывается пеизвестным — скажем, известно лишь, что относительно этого распределения P среднее $E(x, \xi) \equiv 0$; напомним еще, что в рамках рассматриваемой нами модели мы имеем величины (x, ξ) непрерывными по $x \in X(S)$ в гильбертовом пространстве H, что приводит к

$$E | (x, \xi) |^2 \le C ||x||_X^2, \quad x \in X(S),$$

и понятно, что это также является известным свойством распределения P.

Независимо от того, каким является истинное распределение вероятностей P, можно попытаться использовать оценки, являющиеся наилучшими по отношению к какому-либо (взятому по тем или иным соображениям) распределению P_0 . Скажем, рассматривая обобщенное решение $u=\theta \in W(S)$ граничной задачи (3.1) с вложением

$$W(S) \subseteq W_0(S), \tag{3.11}$$

которое позволяет при $W_0(S) = X_0(S)^*$ интериретировать u = (x, u) как функцию от пробных $x \in X_0(S)$ из соответствующего

$$X_0(S) \subseteq X(S); \qquad (3.11')$$

в качестве распределения P_0 соответствующего обобщенного $\xi = (x, \xi), x \in X_0(S),$ можно взять распределение «белого шума» на гильбертовом $X_0(S)$ — конечно. здесь речь идет о пространстве $X_0(S)$ типа W с илотным в нем $C_0^\infty(S)$ в рамках нашей общей схемы \S 1 гл. І. Согласно этому, в качестве оценок значений (x, θ) при пробных $x \in X_0(S)$ для неизвестного $u = \theta \in \Theta$ в $W_0(S)$ предлагается взять величины $(x, \widehat{\theta}),$ определяемые по формуле (3.10) с заменой ортонормированного базиса в $\Theta \subseteq W(S)$ на ортонормированный базис $\{\theta_k\}$ в $\Theta \subseteq W_0(S)$ и оператора $\mathscr P$ на соответствующий оператор

$$\mathcal{P}_0: W_0(S) \to X_0(S)$$

в представлении Рисса сопряженного пространства $W_0(S) = X_0(S)^*$, что дает

$$(x,\widehat{\theta}) = \sum_{h} (x, \theta_{h}) (\mathcal{P}_{\theta} \dot{\theta}_{h}, \xi). \tag{3.12}$$

Получаемые таким образом величины $(x, \widehat{\theta}) \in H = H_1(\xi)$ назовем псевдонаилучшими оценками для $(x, \widehat{\theta})$ — подчеркием, что они являются наилучшими при $P = P_0$.

Теорема. Псевдонаилучшие оценки являются несме-

щенными.

В самом деле,

$$E_{\theta}(x,\widehat{\theta}) = \sum_{k} (x, \theta_{k}) E_{\theta}(\mathcal{P}_{0}\theta_{k}, \xi) =$$

$$= \sum_{k} (x, \theta_{k}) (\mathcal{P}_{0}\theta_{k}, \theta) = (x, \theta),$$

поскольку для $\theta \in \Theta$ в гильбертовом $W_0(S)$ мы имеем разложение

$$\theta = \sum_{k} (\mathcal{P}_0 \theta_k, \theta) \, \theta_k \tag{3.13}$$

по ортонормированиому базису $\{\theta_k\}$ в $\Theta \subseteq W_0(S)$.

Остановимся дополнительно на случае, когда (3.11), (3.11') есть вложения Гильберта — Шмидта. Тогда обобщенная случайная функция $\xi = (x, \xi), x \in X_0(S)$, наблюдаемая как результат стохастических возмущений решения $u = \theta \in W_0(S)$ в (3.1), имеет эквивалентную моди-

фикацию, все реализации которой есть

$$\xi \in W_0(S) \tag{3.14}$$

— см. по этому поводу § 3 гл. І. Рассматривая реализацию $\xi \in W_0(S)$, для оценки $\widehat{\theta}$ спрятанной в ней составляющей $u = \theta \in \Theta$ можно попытаться взять наилучшее приближение для $\xi \in W_0(S)$ функциями из линейной оболочки $\theta \in \Theta$, точнее, из замыкания $[\Theta]$ в $W_0(S)$ —это наилучшее приближение $\widehat{\theta} \in [\Theta]$ дается проекцией функции ξ на подпространство $[\Theta]$ в гильбертовом $W_0(S)$. Взяв ортопормированный базис $\{\theta_k\}$ из линейной оболочки Θ в $W_0(S)$ и дополнив его элементами $\{u_k\}$ до ортопормированного базиса во всем $W_0(S)$, для

$$\boldsymbol{\xi} = \sum_{\mathbf{k}} \left(\boldsymbol{\mathcal{P}}_{\mathbf{0}} \boldsymbol{\theta}_{\mathbf{k}}, \boldsymbol{\xi} \right) \boldsymbol{\theta}_{\mathbf{k}} + \sum_{\mathbf{k}} \left(\boldsymbol{\mathcal{P}}_{\mathbf{0}} \boldsymbol{u}_{\mathbf{k}}, \boldsymbol{\xi} \right) \boldsymbol{u}_{\mathbf{k}}$$

получим

$$\widehat{\boldsymbol{\theta}} = \sum_{k} \left(\mathcal{P}_0 \boldsymbol{\theta}_k, \boldsymbol{\xi} \right) \boldsymbol{\theta}_k,$$

что при всех пробных $x \in X_0(S)$ дает

$$(x, \widehat{\theta}) = \sum_{R} (x, \theta_{R}) (\mathscr{P}_{\theta} \theta_{R}, \xi).$$

Непосредственно видно, что изложенный выше известный метод наименьших квадратов дает для значений (x, θ) оценки $(x, \overline{\theta})$, введенные нами по формуле (3.12) как псевдонаилучшие — наилучшие по отношению к распределению $P = P_0$ стохастических возмущений типа «белого шума» на пространстве пробных функций $X_0(S)$. Коротко сформулируем это в виде следующего предложения.

T е o р e м a. O ψ енки наименьших квадратов являются псевдонаилучшими.

Вернемся к наплучшим оценкам, получающимся предложенным выше методом при $P=P_0$. Понятно, что даже для наилучших оценок $(x, \hat{\theta})$ стоит вопрос о том, насколько они хороши с точки зрения близости к оцениваемым значениям (x, θ) , например с точки зрения близости в смысле среднеквадратичного расстояния

$$E_{\theta} | (x, \widehat{\theta}) - (x, \theta) |^2 = E | (x, \widehat{\theta}) |^2.$$
 (3.15)

Этот вопрос можно поставить точнее в обстановке, когда рассматриваются расширяющиеся данные — в нашей об-

щей модели это, скажем, данные о случайном поле

$$\xi = (x, \xi)$$

при пробных $x \in X(S)$ в расширяющихся областях

$$S=S_n, n=1, 2, \ldots,$$

а именио, точность оценок

$$\eta_n = (x, \widehat{\theta}_n)$$

но данным в каждой области S_n можно охарактеризовать их состоятельностью, означающей, что

$$E \mid (x, \widehat{\theta}_n) - (x, \theta) \mid^2 \to 0 \tag{3.16}$$

upu $n \to \infty$.

Здесь определенные в каждой области S_n обобщенные функции $u=\theta\in W\left(S_n\right)$ естественно рассматривать как обобщенные функции в области

$$S_* = \bigcup_n S_n$$

характеризуемые не только пробными $x \in C_0^\infty(S_*)$, но и обобщенными пробными функциями x, каждая из которых входит в какое-либо

$$X(S_n) = W(S_n)^*.$$

Выясним условия состоятельности оценок (x, 0) значений (x, θ) , обративнись сначала к одномерному множеству Θ , когда речь идет фактически об оценке неизвестного $\lambda \in R^1$ в представлении $\theta = \lambda \theta_0$ обобщенной функции $u = \theta$ в области S_* с данной в S_* функцией θ_0 . В каждой области S_n мы имеем $\theta \in W(S_n)$ с пормой

$$\|\theta\|_{W(S_n)} = \sup_{\|x\|=1} (x, \theta),$$

где sup берется по указанным пробным $x \in X(S_n)$. Ограниченность этой нормы по $n=1,\ 2,\ \dots$ означает для функции θ в области S_* включение $\theta \in$ обобщенной ξ∈ $\in W(S_*)$, и вместе с этим мы имеем включение $\in \mathbf{W}(S_*)$ возникающего в нашей модели гауссовского ξ∈ обобщенного поля в области S_* . Допустим, что по отношению к распределению P со средним $\in \mathbf{W}(S_*)$ $E\xi \equiv 0$ представляет стохастические возмущения, oxaрактеризованные в (3.2) для $S_* = S$. Тогда распределение P_{θ} со средним

редним $E_{ heta} \xi = heta$

(3.17)

будет абсолютно непрерывным относительно распределения P, и сходимость в (3.16) может быть, очевидно, лишь при $\theta=0$.

Таким образом, условие

ьа
$$\theta \neq 0$$
 является необходимым для состоятельности наилучших оценок. С другой стороны, при этом условии для определяемых общей формулой (3.9) оценок функции $\theta \in \Theta$ в области $S = S_n$ мы имеем

 $\|\theta\|_{W(S_n)} \to \infty$

$$(x,\theta) = \frac{1}{\|\theta\|_{W(S_n)}^2} (x,\theta_0) \left(\mathcal{P}\theta_0, \xi \right)$$

с постоянным при $n \to \infty$ значением (x, θ_0) на данном пробном x п

$$E\left|\left(x,\widehat{\theta}\right)\right|^{2} \leqslant C \frac{\left|\left(x,\theta_{0}\right)\right|^{2}}{\left\|\theta_{0}\right\|_{W(S_{n})}^{2}} \to 0.$$

где постоянная C зависит от распределения P — уточним, что в случае стохастических возмущений типа «белого шума», охарактеризованных в (3.7),

$$E\left|\left(x,\widehat{\theta}\right)\right|^2 = \sigma^2 \frac{\left|\left(x,\theta_0\right)\right|^2}{\left\|\theta_0\right\|_W^2(S_n)}.$$

Понятно, что (3.17) является пеобходимым ус-

ловием состоятельности оценок для общего Θ , поскольку, как мы видели, его нарушение при каком-либо $\theta = \theta_0$ лишает свойства состоятельности даже наилучшие оценки, несмещенные лишь для «одномерного» параметра вида $\theta = \lambda \theta_0$. Уже отмечалось, что при несмещенных оцепках можно, не ограничивая общности, расширить Θ до его (замкнутой) линейной оболочки; оказывается, что при взятом в таком виде Θ условие (3.17) на $\theta = \Theta$ будет достаточным для состоятельности всех наилучших

Располагая несмещенной оценкой $\eta_n = (x, \hat{\theta})$ по данным в области $S = S_n$, наилучшую оценку $\eta_{n+1} = (x, \hat{\theta})$ по данным в расширенной области $S = S_{n+1} \supseteq S_n$ можно

оценок (x, θ) . Покажем это.

получить соответствующей операцией проектирования, в общей форме описанной в (3.5), и, таким образом, последовательность даилучших оценок η_n , $n=1,\ 2,\ \ldots$, получаемая последовательным проектированием, имеет в $\mathbf{H}=\mathscr{L}_2(\Omega)$ предел $\eta=\lim\eta_n$. Каждая величина η_n по своему определению такова (сравни (3.4)), что формула

$$E(\varphi, \xi) \eta_n = (\varphi, \theta_n), \quad \varphi \in C_0^{\infty}(S_n).$$

определяет некоторую функцию $\theta_n \in \Theta$. Очевидно, что при сходимости η_n в **H** мы имеем слабую сходимость обобщенных функций $\theta_n \in \Theta$ в области $S_* = \bigcup S_n$, и в силу замкнутости Θ получаем предельную функцию $\theta = \lim \theta_n \in \Theta$, для которой

$$E(\varphi, \xi) \eta = (\varphi, \theta). \quad \varphi \in C_0^{\infty}(S_*).$$

Полученное представление функции $\theta \in \Theta$ указывает на ее пепрерывность относительно пробных $\phi \in C_0^\infty(S_*)$ по норме $\|\phi\|_X$, что определяет принадлежность $\theta \in W(S_*)$, а это в силу условия (3.17) может быть лишь для $\theta = 0$, $\eta = 0$. В итоге видим, что при условии (3.17)

$$\lim \eta_n = \eta = 0$$

B H, T. e. $E|\eta_n|^2 \to 0$ nph $n \to \infty$.

Перейдя к предложенным в (3.12) исевдонанлучшим оценкам $(x, \widehat{\theta})$, отвечающим вложениям (3.11), (3.11) в области $S = S_*$, укажем следующий критерий их состоятельности.

Теорема. Hpu условии, что для каждой функции $\theta \neq 0$

$$\|\theta\|_{W_0(S_n)} \to \infty$$
,

псевдонаилучшие оценки $(x, \ \widehat{0})$ всех $(x, \ \theta)$ являются состоятельными.

Для доказательства нужно лишь припять во винмание, что для среднеквадратичных ошибок

$$E_{\theta} \mid (x, \widehat{\theta}) - (x, \theta) \mid^2 = E \mid (x, \widehat{\theta}) \mid^2$$

согласно вложениям (3.11), (3.11)' мы имеем мажорантное соотношение

$$E|(x,\widehat{\theta})|^2 \leqslant CE_0|(x,\widehat{\theta})|^2$$
,

где правая часть представляет те опибки, которые име-

ли бы место для $P = P_0$, отвечая псевдораспределению P_0 — как фактически уже было указано, при условии теоремы для оценок $\eta_n = (x, \widehat{\theta})$ по данным в расширяющихся областях S_n мы имеем

$$E_0|\eta_n|^2 \to 0.$$

Добавим в заключение, что при эквивалентности порм в используемых для построения псевдопаилучших оценок вложениях (3.11). (3.11)' условие теоремы, равносильное условию (3.17), будет пеобходимым условием состоятельности.

ОГЛАВЛЕНИЕ

Преди Введ е					• .	٠.	•	:	•	:	:				. 5 . 7
Глава	I.	Обоб	іщен:	ные	случ	айн	ые (руні	сции	и	их	pea	лиз	аци	a 16
§	1.	Неко	торы	е в	водн1	ie i	к но	тия							. 16
		1° Обе ства ядром стиче	общен типа 1 (24) ские	иные W). 4° инте	случ (20). Обоб граль	айн 3°] щени 1 (27	ые ф Прос ные	ункі гран случ	ции ства айнь	(16 c i ie ¢). восп унк	2°] рои:	Прос звода и с	тран ицп тоха	[- M[-
§	2.	Прос	тран	ства	про	бны	x of								. 32
	((1° Пр стран ные п 4° Пр (41). 5° Мул функц	ства, ростр еобра ° Пол	екар атона ваос муког канип	анны за дл ние С гельн	е с с ц ди Бурь ые д	опера ффер е пр иффе	тора ренці обнь ерені	ми з чалы их о циал	в <i>£</i> ных боби ьныс	2 (3 опер ценн е оп	84). рато вых ерат	оры фун фун	іроб- (37). кциі (55)	ř Ž
§		Реал	,						цени	ых	фу	нкц	ий і	t ne	
		котор		-					•	•	•	•	•	•	. 65
	1	l° Обо 2° Ре влож 4° В обоби	ализа спин	ция ((66), шя	луча 3°] Гиль	йных Гаусс берта	с фун совсн а — І	кциі ие с Шми,	і и случа цта	неі айнь (72)	кото ле ф). 5	рые (унк (° С	тес ции луча	ремі (71) йны	ы.).
§	4.	Гран чай	ичнь собо							X (фун	: КЦТ	ій •	(слу ·	7- . 79
	;	1° Нен странс значен (92). значен	ств (° 4ия (4° Н	79). 2 82). екото	арак 2° Сле 3° П	ед об олно	бобщ та с	свой еннь исте наль	ихф иы	ункі гран	обол ций ичні йств	и і ых	рани знач	0qп Чинч Чинч Чинч	ie t
Глава	11	7. Дис слу	ффер /чайв	ых енці	іальн фуні	ње сций	y pa	авн е	ния	дJ •	я.	о бо	бщ е :	нны	x . 99
ş	1.	. 0ố o	бщев	пые	пиф	фер	енци	аль	ные	ypa	авне	ни	a.		. 99
	1	і' Про 1' Про	бные	фун	кции	дл	я с	пера						(99).
ş		Граг			_										. 119
~]	ренци вое у параб	равне оличе	их у ние ские	равне (132). урав	ений . 3° нени	(11 Стох Я (1	9). : асти	2° C	тоха	сти	иеск	с д ое в 1чесі)- H
§	3.	Одно	родн	ьые з	ураві	тени	Я.	•		•	•			•	. 159
		1° О прибл жаемс цолжа	оть р	ные Эешен	реше ий;	ния устра	15) миня	9). ые о	2° : собе	Глад ннос	цкос Сти	ть л (164	и пр). 3°	одол	I-

Глава III. Случайные поля	177
§ 1. Вероятностные характеристики стохастических граничных задач	177
1° Среднее значение (177). 2° Корреляционная функция (178). 3° Характеристический функционал (184).	
§ 2. Прогнозирование и марковское свойство 1° Задача о наилучшем прогнозе (189). 2° Наилучший прогноз и марковское свойство (198).	189
Глава IV. Гауссовские случайные поля	209
§ 1. Некоторые всномогательные предложения	209
1° Гауссовские величины и о-алгебры событий (209). 2° Полиномы от гауссовских величин (212). 3° Одна теорема сравнения для квадратичных форм от гауссовских величин (216). 4° Отношение правдоподобия (218).	
§ 2. Идентификация коэффициентов стохастических дифференциальных уравнений по реализации их решения	225
1° Условия эквивалентности и взаимной сингулярности гауссовских распределений (225). 2° Идентификация коэффициентов (230), 3° Об оценках корреляционного оператора (237).	
 З. Оценка осредненных решений стохастических дифференциальных уравнений	240
1° Постановка задачи. Наилучшие несмещенные оценки (240). 2° Псевдонаилучшие оценки и метод наименьших квадратов; условие состоятельности (246).	